scispace - formally typeset
Search or ask a question

Showing papers in "IEEE Transactions on Communications in 2014"


Journal ArticleDOI
TL;DR: The flexible nature of GFDM makes this waveform a suitable candidate for future 5G networks, and its main characteristics are analyzed.
Abstract: Cellular systems of the fourth generation (4G) have been optimized to provide high data rates and reliable coverage to mobile users. Cellular systems of the next generation will face more diverse application requirements: the demand for higher data rates exceeds 4G capabilities; battery-driven communication sensors need ultra-low power consumption; and control applications require very short response times. We envision a unified physical layer waveform, referred to as generalized frequency division multiplexing (GFDM), to address these requirements. In this paper, we analyze the main characteristics of the proposed waveform and highlight relevant features. After introducing the principles of GFDM, this paper contributes to the following areas: 1) the means for engineering the waveform's spectral properties; 2) analytical analysis of symbol error performance over different channel models; 3) concepts for MIMO-GFDM to achieve diversity; 4) preamble-based synchronization that preserves the excellent spectral properties of the waveform; 5) bit error rate performance for channel coded GFDM transmission using iterative receivers; 6) relevant application scenarios and suitable GFDM parameterizations; and 7) GFDM proof-of-concept and implementation aspects of the prototype using hardware platforms available today. In summary, the flexible nature of GFDM makes this waveform a suitable candidate for future 5G networks.

809 citations


Journal ArticleDOI
TL;DR: This paper studies a WPCN where one multi-antenna access point (AP) coordinates energy transfer and information transfer to/from a set of single-antenn users, and obtains the minimum throughput among all users by a joint design of the DL-UL time allocation, the DL energy beamforming, and the UL transmit power allocation, as well as receive beamforming.
Abstract: The newly emerging wireless powered communication networks (WPCNs) have recently drawn significant attention, where radio signals are used to power wireless terminals for information transmission. In this paper, we study a WPCN where one multi-antenna access point (AP) coordinates energy transfer and information transfer to/from a set of single-antenna users. A harvest-then-transmit protocol is assumed where the AP first broadcasts wireless power to all users via energy beamforming in the downlink (DL), and then, the users send their independent information to the AP simultaneously in the uplink (UL) using their harvested energy. To optimize the users' throughput and yet guarantee their rate fairness, we maximize the minimum throughput among all users by a joint design of the DL-UL time allocation, the DL energy beamforming, and the UL transmit power allocation, as well as receive beamforming. We solve this nonconvex problem optimally by two steps. First, we fix the DL-UL time allocation and obtain the optimal DL energy beamforming, UL power allocation, and receive beamforming to maximize the minimum signal-to-interference-plus-noise ratio of all users. This problem is shown to be still nonconvex; however, we convert it equivalently to a spectral radius minimization problem, which can be solved efficiently by applying the alternating optimization based on the nonnegative matrix theory. Then, the optimal time allocation is found by a one-dimensional search to maximize the minimum rate of all users. Furthermore, two suboptimal designs of lower complexity are also proposed, and their throughput performance is compared against that of the optimal solution.

433 citations


Journal ArticleDOI
TL;DR: The resource allocation problem in both the uplink and the downlink for two-tier networks comprising spectrum-sharing femtocells and macrocells is investigated and an iterative subchannel and power allocation algorithm considering heterogeneous services and cross-tier interference is proposed.
Abstract: Femtocells are being considered a promising technique to improve the capacity and coverage for indoor wireless users. However, the cross-tier interference in the spectrum-sharing deployment of femtocells can degrade the system performance seriously. The resource allocation problem in both the uplink and the downlink for two-tier networks comprising spectrum-sharing femtocells and macrocells is investigated. A resource allocation scheme for cochannel femtocells is proposed, aiming to maximize the capacity for both delay-sensitive users and delay-tolerant users subject to the delay-sensitive users' quality-of-service constraint and an interference constraint imposed by the macrocell. The subchannel and power allocation problem is modeled as a mixed-integer programming problem, and then, it is transformed into a convex optimization problem by relaxing subchannel sharing; finally, it is solved by the dual decomposition method. Subsequently, an iterative subchannel and power allocation algorithm considering heterogeneous services and cross-tier interference is proposed for the problem using the subgradient update. A practical low-complexity distributed subchannel and power allocation algorithm is developed to reduce the computational cost. The complexity of the proposed algorithms is analyzed, and the effectiveness of the proposed algorithms is verified by simulations.

388 citations


Journal ArticleDOI
TL;DR: Simulation results show that the FD-W PCN outperforms the HD-WPCN when effective SIC can be implemented and more stringent peak power constraint is applied at the H-AP.
Abstract: This paper studies optimal resource allocation in the wireless-powered communication network (WPCN), where one hybrid access point (H-AP) operating in full duplex (FD) broadcasts wireless energy to a set of distributed users in the downlink (DL) and, at the same time, receives independent information from the users via time-division multiple access in the uplink (UL). We design an efficient protocol to support simultaneous wireless energy transfer (WET) in the DL and wireless information transmission (WIT) in the UL for the proposed FD-WPCN. We jointly optimize the time allocations to the H-AP for DL WET and different users for UL WIT and the transmit power allocations over time at the H-AP to maximize the users' weighted sum rate of UL information transmission with harvested energy. We consider both the cases with perfect and imperfect self-interference cancellation (SIC) at the H-AP, for which we obtain optimal and suboptimal time and power allocation solutions, respectively. Furthermore, we consider the half-duplex (HD) WPCN as a baseline scheme and derive its optimal resource allocation solution. Simulation results show that the FD-WPCN outperforms the HD-WPCN when effective SIC can be implemented and more stringent peak power constraint is applied at the H-AP.

379 citations


Journal ArticleDOI
TL;DR: This paper proposes two tight SM capacity upper bounds and presents the solution of the optimal time split ratio for the maximum system throughput according to the proposed upper bound and conducts Monte-carlo simulations to reveal the throughput gain of the proposed SM-FD relaying protocol.
Abstract: We consider a dual-hop full-duplex relaying system, where the energy constrained relay node is powered by radio frequency signals from the source using the time-switching architecture, both the amplify-and-forward and decode-and-forward relaying protocols are studied. Specifically, we provide an analytical characterization of the achievable throughput of three different communication modes, namely, instantaneous transmission, delay-constrained transmission, and delay tolerant transmission. In addition, the optimal time split is studied for different transmission modes. Our results reveal that, when the time split is optimized, the full-duplex relaying could substantially boost the system throughput compared to the conventional half-duplex relaying architecture for all three transmission modes. In addition, it is shown that the instantaneous transmission mode attains the highest throughput. However, compared to the delay-constrained transmission mode, the throughput gap is rather small. Unlike the instantaneous time split optimization which requires instantaneous channel state information, the optimal time split in the delay-constrained transmission mode depends only on the statistics of the channel, hence, is suitable for practical implementations.

374 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present a comprehensive and tractable analytical framework for D2D-enabled uplink cellular networks with a flexible mode selection scheme along with truncated channel inversion power control.
Abstract: Device-to-device (D2D) communication enables the user equipments (UEs) located in close proximity to bypass the cellular base stations (BSs) and directly connect to each other, and thereby, offload traffic from the cellular infrastructure. D2D communication can improve spatial frequency reuse and energy efficiency in cellular networks. This paper presents a comprehensive and tractable analytical framework for D2D-enabled uplink cellular networks with a flexible mode selection scheme along with truncated channel inversion power control. The developed framework is used to analyze and understand how the underlaying D2D communication affects the cellular network performance. Through comprehensive numerical analysis, we investigate the expected performance gains and provide guidelines for selecting the network parameters.

348 citations


Journal ArticleDOI
TL;DR: This work investigates RFID MIMO systems where the channel fading encountered has different statistics than the classical Rayleigh fading model, and finds the trade off between diversity order and spatial multiplexing gains are distinct from wide-area MIMo.
Abstract: Radio Frequency IDentification (RFID) is intended to supplant legacy (optical) bar code scanning technology found in many logistic and retail applications. RFID is distinguished by inexpensive, low power and compact form factor tags, whose longevity and efficacy are predicated on using passive communication techniques and on-tag power harvesting. Such tags employ backscatter modulation, which does not require any active RF components. As a result, backscatter has become an attractive design choice for short-range communications in power constrained wireless sensor networking scenarios. The purpose of this work is two-fold. First, it aims to expose backscatter communication as an emerging topic to a communication systems-theoretic audience. Since backscatter modulation and on-tag power harvesting efficiency are coupled, it is necessary to re-examine notions of power and spectral efficiency from an energy-constraint perspective; this leads to novel coded modulation schemes for future RFID systems. Further, we investigate RFID MIMO systems where the channel fading encountered has different statistics than the classical Rayleigh fading model. In turn,the trade off between diversity order and spatial multiplexing gains are distinct from wide-area MIMO.

340 citations


Journal ArticleDOI
TL;DR: Numerical evaluations illustrate absolute gains in coverage probability for the general user and the worst case user compared with the noncooperative case and it is shown that no diversity gain is achieved using noncoherent joint transmission, whereas full diversity gain can be achieved at the receiver if the transmitting base stations have channel state information.
Abstract: Motivated by the ongoing discussion on coordinated multipoint in wireless cellular standard bodies, this paper considers the problem of base station cooperation in the downlink of heterogeneous cellular networks. The focus of this paper is the joint transmission scenario, where an ideal backhaul network allows a set of randomly located base stations, possibly belonging to different network tiers, to jointly transmit data, to mitigate intercell interference and hence improve coverage and spectral efficiency. Using tools from stochastic geometry, an integral expression for the network coverage probability is derived in the scenario where the typical user located at an arbitrary location, i.e., the general user, receives data from a pool of base stations that are selected based on their average received power levels. An expression for the coverage probability is also derived for the typical user located at the point equidistant from three base stations, which we refer to as the worst case user. In the special case where cooperation is limited to two base stations, numerical evaluations illustrate absolute gains in coverage probability of up to 17% for the general user and 24% for the worst case user compared with the noncooperative case. It is also shown that no diversity gain is achieved using noncoherent joint transmission, whereas full diversity gain can be achieved at the receiver if the transmitting base stations have channel state information.

321 citations


Journal ArticleDOI
TL;DR: This work redesigns scatter radio systems and maximizes range through non-classic bistatic architectures: the carrier emitter is detached from the reader, and impact of important parameters such as the antenna structural mode are presented through bit error rate (BER) results.
Abstract: Scatter radio achieves communication by reflection and requires low-cost and low-power RF front-ends. However, its use in wireless sensor networks (WSNs) is limited, since commercial scatter radio (e.g. RFID) offers short ranges of a few tens of meters. This work redesigns scatter radio systems and maximizes range through non-classic bistatic architectures: the carrier emitter is detached from the reader. It is shown that conventional radio receivers may show a potential 3dB performance loss, since they do not exploit the correct signal model for scatter radio links. Receivers for on-off-keying (OOK) and frequency-shift keying (FSK) that overcome the frequency offset between the carrier emitter and the reader are presented. Additionally, non-coherent designs are also offered. This work emphasizes that sensor tag design should accompany receiver design. Impact of important parameters such as the antenna structural mode are presented through bit error rate (BER) results. Experimental measurements corroborate the long-range ability of bistatic radio; ranges of up to 130 meters with 20 milliwatts of carrier power are experimentally demonstrated, with commodity software radio and no directional antennas. Therefore, bistatic scatter radio may be viewed as a key enabling technology for large-scale, low-cost and low-power WSNs.

313 citations


Journal ArticleDOI
TL;DR: It is shown that the boresight can only affect the coding gain, while the diversity order is determined by the atmospheric fading effect as well as the pointing error effect.
Abstract: The performance of free-space optical (FSO) communication systems is compromised by atmospheric fading and pointing errors. The pointing errors are widely considered as a combination of two components: boresight and jitter. A statistical model is investigated for pointing errors with nonzero boresight by taking into account the laser beamwidth, detector aperture size, and jitter variance. A novel closed-form probability density function (PDF) is derived for this new nonzero boresight pointing error model. Furthermore, we obtain closed-form PDF for the composite lognormal turbulence channels and finite series approximate PDF for the composite Gamma-Gamma turbulence channels, which is suitable for terrestrial FSO applications impaired by building sway. We conduct error rate analysis of on-off keying signaling with intensity modulation and direct detection over the lognormal and Gamma-Gamma fading channels. Asymptotic error rate analysis and outage probability of such a system are also presented based on the derived composite PDFs. It is shown that the boresight can only affect the coding gain, while the diversity order is determined by the atmospheric fading effect as well as the pointing error effect.

311 citations


Journal ArticleDOI
TL;DR: A large-scale approach of the RF-EH technology is adopted and the performance of a network with random number of transmitter-receiver pairs is characterized by using stochastic-geometry tools.
Abstract: Energy harvesting (EH) from ambient radio-frequency (RF) electromagnetic waves is an efficient solution for fully autonomous and sustainable communication networks. Most of the related works presented in the literature are based on specific (and small-scale) network structures, which although give useful insights on the potential benefits of the RF-EH technology, cannot characterize the performance of general networks. In this paper, we adopt a large-scale approach of the RF-EH technology and we characterize the performance of a network with random number of transmitter-receiver pairs by using stochastic-geometry tools. Specifically, we analyze the outage probability performance and the average harvested energy, when receivers employ power splitting (PS) technique for "simultaneous" information and energy transfer. A non-cooperative scheme, where information/energy are conveyed only via direct links, is firstly considered and the outage performance of the system as well as the average harvested energy are derived in closed form in function of the power splitting. For this protocol, an interesting optimization problem which minimizes the transmitted power under outage probability and harvesting constraints, is formulated and solved in closed form. In addition, we study a cooperative protocol where sources' transmissions are supported by a random number of potential relays that are randomly distributed into the network. In this case, information/energy can be received at each destination via two independent and orthogonal paths (in case of relaying). We characterize both performance metrics, when a selection combining scheme is applied at the receivers and a single relay is randomly selected for cooperative diversity.

Journal ArticleDOI
TL;DR: This paper aims at maximizing the overall system throughput while guaranteeing the signal-to-noise-and-interference ratio of both D2D and cellular links, and develops low-complexity algorithms according to the network load.
Abstract: Device-to-device (D2D) communications have been recently proposed as an effective way to increase both spectrum and energy efficiency for future cellular systems. In this paper, joint mode selection, channel assignment, and power control in D2D communications are addressed. We aim at maximizing the overall system throughput while guaranteeing the signal-to-noise-and-interference ratio of both D2D and cellular links. Three communication modes are considered for D2D users: cellular mode, dedicated mode, and reuse mode. The optimization problem could be decomposed into two subproblems: power control and joint mode selection and channel assignment. The joint mode selection and channel assignment problem is NP-hard, whose optimal solution can be found by the branch-and-bound method, but is very complicated. Therefore, we develop low-complexity algorithms according to the network load. Through comparing different algorithms under different network loads, proximity gain, hop gain, and reuse gain could be demonstrated in D2D communications.

Journal ArticleDOI
TL;DR: In this article, a joint routing and caching problem aiming to maximize the fraction of content requests served locally by the deployed SBSs is formulated and a novel reduction to a variant of the facility location problem, which allows to exploit the rich literature of it, to establish algorithms with approximation guarantees for the problem.
Abstract: Small cells constitute a promising solution for managing the mobile data growth that has overwhelmed network operators Local caching of popular content items at the small cell base stations (SBSs) has been proposed to decrease the costly transmissions from the macrocell base stations without requiring high capacity backhaul links for connecting the SBSs with the core network However, the caching policy design is a challenging problem especially if one considers realistic parameters such as the bandwidth capacity constraints of the SBSs that can be reached in congested urban areas We consider such a scenario and formulate the joint routing and caching problem aiming to maximize the fraction of content requests served locally by the deployed SBSs This is an NP-hard problem and, hence, we cannot obtain an optimal solution Thus, we present a novel reduction to a variant of the facility location problem, which allows us to exploit the rich literature of it, to establish algorithms with approximation guarantees for our problem Although the reduction does not ensure tight enough bounds in general, extensive numerical results reveal a near-optimal performance that is even up to 38% better compared to conventional caching schemes using realistic system settings

Journal ArticleDOI
TL;DR: Numerical results suggest that the temporal pulse spread strongly degrades the BER performance for high data rate UWOC systems with on-off keying (OOK) modulation and limits the channel bandwidth in turbid underwater environments.
Abstract: In underwater wireless optical communication (UWOC) links, multiple scattering may cause temporal spread of beam pulse characterized by the impulse response, which therefore results in inter-symbol interference (ISI) and degrades system error performance. The impulse response of UWOC links has been investigated both theoretically and experimentally by researchers but has not been derived in simple closed-form to the best of our knowledge. In this paper, we analyze the optical characteristics of seawater and present a closed-form expression of double Gamma functions to model the channel impulse response. The double Gamma functions model fits well with Monte Carlo simulation results in turbid seawater such as coastal and harbor water. The bit-error-rate (BER) and channel bandwidth are further evaluated based on this model for various link ranges. Numerical results suggest that the temporal pulse spread strongly degrades the BER performance for high data rate UWOC systems with on-off keying (OOK) modulation and limits the channel bandwidth in turbid underwater environments. The zero-forcing (ZF) equalization designed based on our channel model has been adopted to overcome ISI and improve the system performance. It is plausible and convenient to utilize this impulse response model for performance analysis and system design of UWOC systems.

Journal ArticleDOI
TL;DR: A modulation and channel access scheme for nanonetworks in the Terahertz Band is developed based on the transmission of one-hundred-femtosecond-long pulses by following an asymmetric On-Off Keying modulation Spread in Time (TS-OOK).
Abstract: Nanonetworks consist of nano-sized communicating devices which are able to perform simple tasks at the nanoscale. Nanonetworks are the enabling technology of long-awaited applications such as advanced health monitoring systems or high-performance distributed nano-computing architectures. The peculiarities of novel plasmonic nano-transceivers and nano-antennas, which operate in the Terahertz Band (0.1-10 THz), require the development of tailored communication schemes for nanonetworks. In this paper, a modulation and channel access scheme for nanonetworks in the Terahertz Band is developed. The proposed technique is based on the transmission of one-hundred-femtosecond-long pulses by following an asymmetric On-Off Keying modulation Spread in Time (TS-OOK). The performance of TS-OOK is evaluated in terms of the achievable information rate in the single-user and the multi-user cases. An accurate Terahertz Band channel model, validated by COMSOL simulation, is used, and novel stochastic models for the molecular absorption noise in the Terahertz Band and for the multi-user interference in TS-OOK are developed. The results show that the proposed modulation can support a very large number of nano-devices simultaneously transmitting at multiple Gigabits-per-second and up to Terabits-per-second, depending on the modulation parameters and the network conditions.

Journal ArticleDOI
TL;DR: A good approximation of the distribution of the mutual information in this antenna selection system is derived and it shows that channel hardening phenomenon is still retained as full complexity with antenna selection.
Abstract: In this paper, we perform transmit antenna selection to improve the energy efficiency of large scale multiple antenna systems. We derive a good approximation of the distribution of the mutual information in this antenna selection system. It shows that channel hardening phenomenon is still retained as full complexity with antenna selection. Then, we use this closed-form expression to assess the energy efficiency performance. Specifically, we evaluate the performance of the energy efficiency in two different cases: 1) the circuit power consumption is comparable to or even dominates the transmit power, and 2) the circuit power can be ignored due to relatively much higher transmit power. The theoretical analysis indicates that there exists an optimal number of selected antennas to maximize the energy efficiency in the first case, whereas in the second case, the energy efficiency is maximized when all the available antennas are used. Based on these conclusions, two simple but efficient antenna selection algorithms are proposed to obtain the maximum energy efficiency. All the analytical results are verified through computer simulations.

Journal ArticleDOI
TL;DR: The proposed technique is extended to scenarios with multi-user interference, where a zero-forcing receiver is used at the relay node and closed-forms expressions for the outage probability are derived.
Abstract: In this paper, we investigate a low-complexity technique for simultaneous wireless information and energy transfer in multiple-input multiple-output relay channels. The proposed technique exploits the array configuration at the relay node and uses the antenna elements either for conventional decoding or for rectifying (rectennas). In order to keep the complexity low, a dynamic antenna switching between decoding/rectifying is proposed based on the principles of the generalized selection combiner (GSC); the L strongest paths are allocated for decoding while the remaining channel paths for rectifying (and vice versa). The optimal L as well as the allocation strategy that minimizes the outage probability are investigated via theoretical and numerical results. In addition, two performance bounds that provide the optimal performance without the limitation of GSC are proposed by solving a linear programming and a binary knapsack problem, respectively. The proposed technique is extended to scenarios with multi-user interference, where a zero-forcing receiver is used at the relay node; closed-forms expressions for the outage probability are also derived.

Journal ArticleDOI
TL;DR: The proposed detector of the spatial Modulation system is shown to be ML-optimal, despite its lowest complexity amongst the existing detectors, and employing the proposed optimal power allocation provides a substantial gain in terms of the SM system's capacity as well as signal-to-noise ratio compared to its equal-power-allocation counterpart.
Abstract: Spatial Modulation (SM) is a recently developed low-complexity Multiple-Input Multiple-Output scheme that jointly uses antenna indices and a conventional signal set to convey information. It has been shown that the Maximum-Likelihood (ML) detector of an SM system involves joint detection of the transmit antenna index and of the transmitted symbol, hence, the ML search complexity grows linearly with the number of transmit antennas and the size of the signal set. To circumvent the problem, we show that the ML search complexity of an SM system may be rendered independent of the constellation size, provided that the signal set employed is a square- or a rectangular-QAM. Furthermore, we derive bounds for the capacity of the SM system and derive the optimal power allocation between the data and the training sequences by maximizing the worst-case capacity bound of the SM system operating with imperfect channel state information. We show, with the aid of our simulation results, that the proposed detector is ML-optimal, despite its lowest complexity amongst the existing detectors. Furthermore, we show that employing the proposed optimal power allocation provides a substantial gain in terms of the SM system's capacity as well as signal-to-noise ratio compared to its equal-power-allocation counterpart. Finally, we compare the performance of the SM system to that of the conventional Multiple-Input Multiple-Output (MIMO) system and show that the SM system is capable of outperforming the conventional MIMO system by a significant margin, when both the systems are employing optimal power splitting.

Journal ArticleDOI
TL;DR: This paper proposes a low-complexity high-accuracy MIMO symbol detector based on the Expectation Propagation (EP) algorithm, which allows approximating iteratively at polynomial-time the posterior distribution of the transmitted symbols.
Abstract: Modern communications systems use multiple-input multiple-output (MIMO) and high-order QAM constellations for maximizing spectral efficiency. However, as the number of antennas and the order of the constellation grow, the design of efficient and low-complexity MIMO receivers possesses big technical challenges. For example, symbol detection can no longer rely on maximum likelihood detection or sphere-decoding methods, as their complexity increases exponentially with the number of transmitters/receivers. In this paper, we propose a low-complexity high-accuracy MIMO symbol detector based on the Expectation Propagation (EP) algorithm. EP allows approximating iteratively at polynomial-time the posterior distribution of the transmitted symbols. We also show that our EP MIMO detector outperforms classic and state-of-the-art solutions reducing the symbol error rate at a reduced computational complexity.

Journal ArticleDOI
TL;DR: A two-stage dynamic programming algorithm is proposed to solve energy-efficient wireless resource management in cellular networks where base stations (BSs) are equipped with energy harvesting devices, using statistical information for traffic intensity and renewable energy.
Abstract: We consider energy-efficient wireless resource management in cellular networks where base stations (BSs) are equipped with energy harvesting devices, using statistical information for traffic intensity and renewable energy. The problem is formulated as adapting BSs' on-off states, active resource blocks (e.g., subcarriers), and renewable energy allocation to minimize the average grid power consumption while satisfying the users' quality of service (blocking probability) requirements. It is transformed into an unconstrained optimization problem to minimize a weighted sum of grid power consumption and blocking probability. A two-stage dynamic programming algorithm is proposed to solve this problem, by which the BSs' on-off states are optimized in the first stage, and the active BSs' resource blocks are allocated iteratively in the second stage. Compared with the optimal joint BSs' on-off states and active resource blocks allocation algorithm, the proposed algorithm greatly reduces the computational complexity and can achieve the optimal performance when the traffic is uniformly distributed.

Journal ArticleDOI
TL;DR: A statistical framework to evaluate the performance of multi-tier heterogeneous networks with successive interference cancellation (SIC) capabilities is developed, accounting for the computational complexity of the cancellation scheme and relevant network related parameters such as random location of the access points and mobile users, and the characteristics of the wireless propagation channel.
Abstract: At present, operators address the explosive growth of mobile data demand by densification of the cellular network so as to reduce the transmitter-receiver distance and to achieve higher spectral efficiency. Due to such network densification and the intense proliferation of wireless devices, modern wireless networks are interference-limited, which motivates the use of interference mitigation and coordination techniques. In this work, we develop a statistical framework to evaluate the performance of multi-tier heterogeneous networks with successive interference cancellation (SIC) capabilities, accounting for the computational complexity of the cancellation scheme and relevant network related parameters such as random location of the access points (APs) and mobile users, and the characteristics of the wireless propagation channel. We explicitly model the consecutive events of canceling interferers and we derive the success probability to cancel the $n$ -th strongest signal and to decode the signal of interest after $n$ cancellations. When users are connected to the AP which provides the maximum average received signal power, the analysis indicates that the performance gains of SIC diminish quickly with $n$ and the benefits are modest for realistic values of the signal-to-interference ration (SIR). We extend the statistical model to include several association policies where distinct gains of SIC are expected: (i) maximum instantaneous SIR association, (ii) minimum load association, and (iii) range expansion. Numerical results show the effectiveness of SIC for the considered association policies. This work deepens the understanding of SIC by defining the achievable gains for different association policies in multi-tier heterogeneous networks.

Journal ArticleDOI
TL;DR: It is found that unlike isolated cells, if one treats interference as noise, the secrecy rate in a cellular network does not grow monotonically with the transmit power, and the network tends to be in secrecy outage if the transmitter power grows unbounded.
Abstract: In this paper, we study physical layer security for the downlink of cellular networks, where the confidential messages transmitted to each mobile user can be eavesdropped by both; 1) the other users in the same cell and 2) the users in the other cells. The locations of base stations and mobile users are modeled as two independent two-dimensional Poisson point processes. Using the proposed model, we analyze the secrecy rates achievable by regularized channel inversion (RCI) precoding by performing a large-system analysis that combines tools from stochastic geometry and random matrix theory. We obtain approximations for the probability of secrecy outage and the mean secrecy rate, and characterize regimes where RCI precoding achieves a non-zero secrecy rate. We find that unlike isolated cells, if one treats interference as noise, the secrecy rate in a cellular network does not grow monotonically with the transmit power, and the network tends to be in secrecy outage if the transmit power grows unbounded. Furthermore, we show that there is an optimal value for the base station deployment density that maximizes the secrecy rate, and this value is a decreasing function of the transmit power.

Journal ArticleDOI
TL;DR: Investigation of a multiuser dual-hop relaying system over mixed radio frequency/free-space optical links finds engineering insights are manifested, such as the coding and diversity gain of each user, the impact of the pointing error displacement on the FSO link and the V-BLAST ordering effectiveness at the relay.
Abstract: A multiuser dual-hop relaying system over mixed radio frequency/free-space optical (RF/FSO) links is investigated. Specifically, the system consists of m single-antenna sources, a relay node equipped with n≥ m receive antennas and a single photo-aperture transmitter, and one destination equipped with a single photo-detector. RF links are used for the simultaneous data transmission from multiple sources to the relay. The relay operates under the decode-and-forward protocol and utilizes the popular V-BLAST technique by successively decoding each user's transmitted stream. Two common norm-based orderings are adopted, i.e., the streams are decoded in an ascending or a descending order. After V-BLAST, the relay retransmits the decoded information to the destination via a point-to-point FSO link in m consecutive timeslots. Analytical expressions for the end-to-end outage probability and average symbol error probability of each user are derived, while closed-form asymptotic expressions are also presented. Capitalizing on the derived results, some engineering insights are manifested, such as the coding and diversity gain of each user, the impact of the pointing error displacement on the FSO link and the V-BLAST ordering effectiveness at the relay.

Journal ArticleDOI
TL;DR: Numerical results, obtained using the invasive weed optimization algorithm, show that the proposed energy-efficient uplink design not only outperforms other algorithms in terms of energy efficiency while satisfying the QoS requirements, but also performs closer to the optimal design.
Abstract: Recently, energy efficiency in wireless networks has become an important objective. Aside from the growing proliferation of smartphones and other high-end devices in conventional human-to-human (H2H) communication, the introduction of machine-to-machine (M2M) communication or machine-type communication into cellular networks is another contributing factor. In this paper, we investigate quality-of-service (QoS)-driven energy-efficient design for the uplink of long term evolution (LTE) networks in M2M/H2H co-existence scenarios. We formulate the resource allocation problem as a maximization of effective capacity-based bits-per-joule capacity under statistical QoS provisioning. The specific constraints of single carrier frequency division multiple access (uplink air interface in LTE networks) pertaining to power and resource block allocation not only complicate the resource allocation problem, but also render the standard Lagrangian duality techniques inapplicable. We overcome the analytical and computational intractability by first transforming the original problem into a mixed integer programming (MIP) problem and then formulating its dual problem using the canonical duality theory. The proposed energy-efficient design is compared with the spectral efficient design along with round robin (RR) and best channel quality indicator (BCQI) algorithms. Numerical results, which are obtained using the invasive weed optimization (IWO) algorithm, show that the proposed energy-efficient uplink design not only outperforms other algorithms in terms of energy efficiency while satisfying the QoS requirements, but also performs closer to the optimal design.

Journal ArticleDOI
TL;DR: This paper proposes relay selection to increase the physical layer security in multiuser cooperative relay networks with multiple amplify-and-forward relays, in the presence of multiple eavesdroppers, with three criteria to select the best relay and user pair to strengthen the network security against eavesdropping attack.
Abstract: This paper proposes relay selection to increase the physical layer security in multiuser cooperative relay networks with multiple amplify-and-forward relays, in the presence of multiple eavesdroppers. To strengthen the network security against eavesdropping attack, we present three criteria to select the best relay and user pair. Specifically, criteria I and II study the received signal-to-noise ratio (SNR) at the receivers, and perform the selection by maximizing the SNR ratio of the user to the eavesdroppers. To this end, criterion I relies on both the main and eavesdropper links, while criterion II relies on the main links only. Criterion III is the standard max-min selection criterion, which maximizes the minimum of the dual-hop channel gains of main links. For the three selection criteria, we examine the system secrecy performance by deriving the analytical expressions for the secrecy outage probability. We also derive the asymptotic analysis for the secrecy outage probability with high main-to-eavesdropper ratio. From the asymptotic analysis, an interesting observation is reached: for each criterion, the system diversity order is equivalent to the number of relays regardless of the number of users and eavesdroppers.

Journal ArticleDOI
TL;DR: A novel physical layer authentication scheme is proposed in this paper by exploiting the time-varying carrier frequency offset (CFO) associated with each pair of wireless communications devices to validate the feasibility of using CFO for authentication.
Abstract: A novel physical layer authentication scheme is proposed in this paper by exploiting the time-varying carrier frequency offset (CFO) associated with each pair of wireless communications devices. In realistic scenarios, radio frequency oscillators in each transmitter-and-receiver pair always present device-dependent biases to the nominal oscillating frequency. The combination of these biases and mobility-induced Doppler shift, characterized as a time-varying CFO, can be used as a radiometric signature for wireless device authentication. In the proposed authentication scheme, the variable CFO values at different communication times are first estimated. Kalman filtering is then employed to predict the current value by tracking the past CFO variation, which is modeled as an autoregressive random process. To achieve the proposed authentication, the current CFO estimate is compared with the Kalman predicted CFO using hypothesis testing to determine whether the signal has followed a consistent CFO pattern. An adaptive CFO variation threshold is derived for device discrimination according to the signal-to-noise ratio and the Kalman prediction error. In addition, a software-defined radio (SDR) based prototype platform has been developed to validate the feasibility of using CFO for authentication. Simulation results further confirm the effectiveness of the proposed scheme in multipath fading channels.

Journal ArticleDOI
TL;DR: A data cleansing-based robust spectrum sensing algorithm is developed to solve the issue of cooperative spectrum sensing with a crowd of low-end personal spectrum sensors, where the sensing data from crowd sensors that may be unreliable, untrustworthy, or even malicious makes the existing cooperative sensing schemes ineffective.
Abstract: This paper investigates the issue of cooperative spectrum sensing with a crowd of low-end personal spectrum sensors (such as smartphones, tablets, and in-vehicle sensors), where the sensing data from crowd sensors that may be unreliable, untrustworthy, or even malicious. Moreover, due to either unexpected equipment failures or malicious behaviors, every crowd sensor could sporadically and randomly contribute with abnormal data, which makes the existing cooperative sensing schemes ineffective. To tackle these challenges, we first propose a generalized modeling approach for sensing data with an arbitrary abnormal component. Under this model, we then analyze the impact of general abnormal data on the performance of the cooperative sensing, by deriving closed-form expressions of the probabilities of global false alarm and global detection. To improve sensing data quality and enhance cooperative sensing performance, we further formulate an optimization problem as stable principal component pursuit, and develop a data cleansing-based robust spectrum sensing algorithm to solve it, where the under-utilization of licensed spectrum bands and the sparsity of nonzero abnormal data are jointly exploited to robustly cleanse out the potential nonzero abnormal data component from the original corrupted sensing data. Extensive simulation results demonstrate that the proposed robust sensing scheme performs well under various abnormal data parameter configurations.

Journal ArticleDOI
TL;DR: A simple and very flexible method for constructing quasi-cyclic (QC) low density paritycheck (LDPC) codes based on finite fields and a reduced-complexity iterative decoding scheme based on the section-wise cyclic structure of their parity-check matrices is presented.
Abstract: This paper presents a simple and very flexible method for constructing quasi-cyclic (QC) low density paritycheck (LDPC) codes based on finite fields. The code construction is based on two arbitrary subsets of elements from a given field. Some well known constructions of QC-LDPC codes based on finite fields and combinatorial designs are special cases of the proposed construction. The proposed construction in conjunction with a technique, known as masking, results in codes whose Tanner graphs have girth 8 or larger. Experimental results show that codes constructed using the proposed construction perform well and have low error-floors. Also presented in the paper is a reduced-complexity iterative decoding scheme for QC-LDPC codes based on the section-wise cyclic structure of their parity-check matrices. The proposed decoding scheme is an improvement of an earlier proposed reduced-complexity iterative decoding scheme.

Journal ArticleDOI
TL;DR: In this paper, the authors model and analyze heterogeneous cellular networks with multiple antenna BSs (multi-antenna HetNets) with $K$ classes or tiers of base stations (BSs), which may differ in terms of transmit power, deployment density, number of transmit antennas, and transmission scheme, and path loss exponent.
Abstract: We model and analyze heterogeneous cellular networks with multiple antenna BSs (multi-antenna HetNets) with $K$ classes or tiers of base stations (BSs), which may differ in terms of transmit power, deployment density, number of transmit antennas, number of users served, transmission scheme, and path loss exponent. We show that the cell selection rules in multi-antenna HetNets may differ significantly from the single-antenna HetNets due to the possible differences in multi-antenna transmission schemes across tiers. While it is challenging to derive exact cell selection rules even for maximizing signal-to-interference-plus-noise-ratio (SINR) at the receiver, we show that adding an appropriately chosen tier-dependent cell selection bias in the received power yields a close approximation. Assuming arbitrary selection bias for each tier, simple expressions for downlink coverage and rate are derived. For coverage maximization, the required selection bias for each tier is given in closed form. Due to this connection with biasing, multi-antenna HetNets may balance load more naturally across tiers in certain regimes compared to single-antenna HetNets, where a large cell selection bias is often needed to offload traffic to small cells.

Journal ArticleDOI
TL;DR: In this paper, the authors developed a framework to characterize the system throughput as a function of arrival rate and per-device data rate for wireless systems in which randomly arriving devices attempt to transmit a fixed payload to a central receiver.
Abstract: For wireless systems in which randomly arriving devices attempt to transmit a fixed payload to a central receiver, we develop a framework to characterize the system throughput as a function of arrival rate and per-device data rate. The framework considers both coordinated transmission (where devices are scheduled) and uncoordinated transmission (where devices communicate on a random access channel and a provision is made for retransmissions). Our main contribution is a novel characterization of the optimal throughput for the case of uncoordinated transmission and a strategy for achieving this throughput that relies on overlapping transmissions and joint decoding. Simulations for a noise-limited cellular network show that the optimal strategy provides a factor of four improvement in throughput compared with slotted ALOHA. We apply our framework to evaluate more general system-level designs that account for overhead signaling. We demonstrate that, for small payload sizes relevant for machine-to-machine (M2M) communications (200 bits or less), a one-stage strategy, where identity and data are transmitted optimally over the random access channel, can support at least twice the number of devices compared with a conventional strategy, where identity is established over an initial random-access stage and data transmission is scheduled.