scispace - formally typeset
Search or ask a question

Showing papers in "IEEE Transactions on Communications in 2021"


Journal ArticleDOI
TL;DR: This paper provides a tutorial overview of IRS-aided wireless communications, and elaborate its reflection and channel models, hardware architecture and practical constraints, as well as various appealing applications in wireless networks.
Abstract: Intelligent reflecting surface (IRS) is an enabling technology to engineer the radio signal propagation in wireless networks. By smartly tuning the signal reflection via a large number of low-cost passive reflecting elements, IRS is capable of dynamically altering wireless channels to enhance the communication performance. It is thus expected that the new IRS-aided hybrid wireless network comprising both active and passive components will be highly promising to achieve a sustainable capacity growth cost-effectively in the future. Despite its great potential, IRS faces new challenges to be efficiently integrated into wireless networks, such as reflection optimization, channel estimation, and deployment from communication design perspectives. In this paper, we provide a tutorial overview of IRS-aided wireless communications to address the above issues, and elaborate its reflection and channel models, hardware architecture and practical constraints, as well as various appealing applications in wireless networks. Moreover, we highlight important directions worthy of further investigation in future work.

1,325 citations


Journal ArticleDOI
TL;DR: A channel estimation framework based on the parallel factor decomposition to unfold the resulting cascaded channel model is proposed and it is demonstrated that the sum rate using the estimated channels always reach that of perfect channels under various settings, thus, verifying the effectiveness and robustness of the proposed estimation algorithms.
Abstract: Reconfigurable Intelligent Surfaces (RISs) have been recently considered as an energy-efficient solution for future wireless networks due to their fast and low-power configuration, which has increased potential in enabling massive connectivity and low-latency communications. Accurate and low-overhead channel estimation in RIS-based systems is one of the most critical challenges due to the usually large number of RIS unit elements and their distinctive hardware constraints. In this paper, we focus on the uplink of a RIS-empowered multi-user Multiple Input Single Output (MISO) uplink communication systems and propose a channel estimation framework based on the parallel factor decomposition to unfold the resulting cascaded channel model. We present two iterative estimation algorithms for the channels between the base station and RIS, as well as the channels between RIS and users. One is based on alternating least squares (ALS), while the other uses vector approximate message passing to iteratively reconstruct two unknown channels from the estimated vectors. To theoretically assess the performance of the ALS-based algorithm, we derived its estimation Cramer-Rao Bound (CRB). We also discuss the downlink achievable sum rate computation with estimated channels and different precoding schemes for the base station. Our extensive simulation results show that our algorithms outperform benchmark schemes and that the ALS technique achieves the CRB. It is also demonstrated that the sum rate using the estimated channels always reach that of perfect channels under various settings, thus, verifying the effectiveness and robustness of the proposed estimation algorithms.

260 citations


Journal ArticleDOI
TL;DR: A two-timescale channel estimation framework to exploit the property that the BS-RIS channel is high-dimensional but quasi-static, while the RIS-UE channel is mobile but low-dimensional is proposed.
Abstract: Channel estimation is challenging for the reconfigurable intelligent surface (RIS)-aided wireless communications. Since the number of coefficients of the cascaded channel among the base station (BS), the RIS, and the user equipment (UE), is the product of the number of BS antennas, the number of RIS elements, and the number of UEs, the pilot overhead can be prohibitively high. In this paper, we propose a two-timescale channel estimation framework to exploit the property that the BS-RIS channel is high-dimensional but quasi-static, while the RIS-UE channel is mobile but low-dimensional. Specifically, to estimate the quasi-static BS-RIS channel, we propose a dual-link pilot transmission scheme, where the BS transmits downlink pilots and receives uplink pilots reflected by the RIS. Then, we propose a coordinate descent-based algorithm to recover the BS-RIS channel. Since the quasi-static BS-RIS channel is estimated less frequently than the mobile channel is, the average pilot overhead can be reduced from a long-term perspective. Although the mobile RIS-UE channel has to be frequently estimated in a small timescale, the associated pilot overhead is low thanks to its low dimension. Simulation results show that the proposed two-timescale channel estimation framework can achieve accurate channel estimation with low pilot overhead.

236 citations


Journal ArticleDOI
TL;DR: Numerical results demonstrate that IRS can significantly improve the achievable rate of SU under both perfect and imperfect CSI cases, and jointly optimizing the beamforming at SU-TX and the reflecting coefficients at each IRS.
Abstract: Cognitive radio (CR) is an effective solution to improve the spectral efficiency (SE) of wireless communications by allowing the secondary users (SUs) to share spectrum with primary users (PUs). Meanwhile, intelligent reflecting surface (IRS), also known as reconfigurable intelligent surface (RIS), has been recently proposed as a promising approach to enhance energy efficiency (EE) of wireless communication systems through intelligently reconfiguring the channel environment. To improve both SE and EE, in this paper, we introduce multiple IRSs to a downlink multiple-input single-output (MISO) CR system, in which a single SU coexists with a primary network with multiple PU receivers (PU-RXs). Our design objective is to maximize the achievable rate of SU subject to a total transmit power constraint on the SU transmitter (SU-TX) and interference temperature constraints on the PU-RXs, by jointly optimizing the beamforming at SU-TX and the reflecting coefficients at each IRS. Both perfect and imperfect channel state information (CSI) cases are considered in the optimization. Numerical results demonstrate that IRS can significantly improve the achievable rate of SU under both perfect and imperfect CSI cases.

186 citations


Journal ArticleDOI
TL;DR: In this article, the authors describe a RIS prototype consisting of 1100 controllable elements working at 5.8 GHz band and propose an efficient algorithm for configuring the RIS over the air by exploiting the geometrical array properties and a practical receiver-RIS feedback link.
Abstract: The prospects of using a Reconfigurable Intelligent Surface (RIS) to aid wireless communication systems have recently received much attention from academia and industry. Most papers make theoretical studies based on elementary models, while the prototyping of RIS-aided wireless communication and real-world field trials are scarce. In this paper, we describe a new RIS prototype consisting of 1100 controllable elements working at 5.8 GHz band. We propose an efficient algorithm for configuring the RIS over the air by exploiting the geometrical array properties and a practical receiver-RIS feedback link. In our indoor test, where the transmitter and receiver are separated by a 30 cm thick concrete wall, our RIS prototype provides a 26 dB power gain compared to the baseline case where the RIS is replaced by a copper plate. A 27 dB power gain was observed in the short-distance outdoor measurement. We also carried out long-distance measurements and successfully transmitted a 32 Mbps data stream over 500 m. A 1080p video was live-streamed and it only played smoothly when the RIS was utilized. The power consumption of the RIS is around 1 W. Our paper is vivid proof that the RIS is a very promising technology for future wireless communications.

180 citations


Journal ArticleDOI
TL;DR: Through extensive simulations, it is demonstrated that the RIS-assisted systems provide promising solutions for indoor/outdoor scenarios at various operating frequencies and exhibit significant results in error performance and achievable data rates even in the presence of system imperfections such as limited range phase adjustment and imperfect channel phase estimation at RISs.
Abstract: Reconfigurable intelligent surface (RIS)-empowered communication is one of the promising 6G technologies that allows the conversion of the wireless channel into an intelligent transmit entity by manipulating the impinging waves using man-made surfaces. In this paper, the potential benefits of using RISs are investigated for indoor/outdoor setups and various frequency bands (from sub 6 GHz to millimeter-waves). First, a general system model with a single RIS is considered and the effect of the total number of reflecting elements on the probabilistic distribution of the received signal-to-noise ratio and error performance is investigated under Rician fading. Also for this case, the path loss exponent is analyzed by considering empirical path loss models. Furthermore, transmission models with multiple RISs are developed and analyzed for indoor and outdoor non line-of-sight (NLOS) scenarios. The conventional RIS selection strategies are also integrated for systems equipped with multiple RISs for the first time. Through extensive simulations, it is demonstrated that the RIS-assisted systems provide promising solutions for indoor/outdoor scenarios at various operating frequencies and exhibit significant results in error performance and achievable data rates even in the presence of system imperfections such as limited range phase adjustment and imperfect channel phase estimation at RISs.

172 citations


Journal ArticleDOI
TL;DR: In this paper, a physics-based model and a scalable optimization framework for large RISs were developed to optimize a large number of sub-wavelength RIS elements for online transmission.
Abstract: Intelligent reflecting surfaces (IRSs) have the potential to transform wireless communication channels into smart reconfigurable propagation environments. To realize this new paradigm, the passive IRSs have to be large, especially for communication in far-field scenarios, so that they can compensate for the large end-to-end path-loss, which is caused by the multiplication of the individual path-losses of the transmitter-to-IRS and IRS-to-receiver channels. However, optimizing a large number of sub-wavelength IRS elements imposes a significant challenge for online transmission. To address this issue, in this article, we develop a physics-based model and a scalable optimization framework for large IRSs. The basic idea is to partition the IRS unit cells into several subsets, referred to as tiles, model the impact of each tile on the wireless channel, and then optimize each tile in two stages, namely an offline design stage and an online optimization stage. For physics-based modeling, we borrow concepts from the radar literature, model each tile as an anomalous reflector, and derive its impact on the wireless channel for a given phase shift by solving the corresponding integral equations for the electric and magnetic vector fields. In the offline design stage, the IRS unit cells of each tile are jointly designed for the support of different transmission modes, where each transmission mode effectively corresponds to a given configuration of the phase shifts that the unit cells of the tile apply to an impinging electromagnetic wave. In the online optimization stage, the best transmission mode of each tile is selected such that a desired quality-of-service (QoS) criterion is maximized. We consider an exemplary downlink system and study the minimization of the base station (BS) transmit power subject to QoS constraints for the users. Since the resulting mixed-integer programming problem for joint optimization of the BS beamforming vectors and the tile transmission modes is non-convex, we derive two efficient suboptimal solutions, which are based on alternating optimization and a greedy approach, respectively. We show that the proposed modeling and optimization framework can be used to efficiently optimize large IRSs comprising thousands of unit cells.

166 citations


Journal ArticleDOI
TL;DR: In this paper, a closed-loop channel estimation (CE) scheme was proposed to estimate the broadband channels that characterize terahertz (THz) massive MIMO systems aided by holographic RISs.
Abstract: We propose a holographic version of a reconfigurable intelligent surface (RIS) and investigate its application to terahertz (THz) massive multiple-input multiple-output systems. Capitalizing on the miniaturization of THz electronic components, RISs can be implemented by densely packing sub-wavelength unit cells, so as to realize continuous or quasi-continuous apertures and to enable holographic communications . In this paper, in particular, we derive the beam pattern of a holographic RIS. Our analysis reveals that the beam pattern of an ideal holographic RIS can be well approximated by that of an ultra-dense RIS, which has a more practical hardware architecture. In addition, we propose a closed-loop channel estimation (CE) scheme to effectively estimate the broadband channels that characterize THz massive MIMO systems aided by holographic RISs. The proposed CE scheme includes a downlink coarse CE stage and an uplink finer-grained CE stage. The uplink pilot signals are judiciously designed for obtaining good CE performance. Moreover, to reduce the pilot overhead, we introduce a compressive sensing-based CE algorithm, which exploits the dual sparsity of THz MIMO channels in both the angular domain and delay domain. Simulation results demonstrate the superiority of holographic RISs over the non-holographic ones, and the effectiveness of the proposed CE scheme.

142 citations


Journal ArticleDOI
TL;DR: A hybrid-relaying scheme empowered by a self-sustainable intelligent reflecting surface (IRS) in a wireless powered communication network (WPCN) to simultaneously improve the performance of downlink energy transfer from a hybrid access point (HAP) to multiple users and uplink information transmission from users to the HAP is proposed.
Abstract: This paper proposes a hybrid-relaying scheme empowered by a self-sustainable intelligent reflecting surface (IRS) in a wireless powered communication network (WPCN), to simultaneously improve the performance of downlink energy transfer (ET) from a hybrid access point (HAP) to multiple users and uplink information transmission (IT) from users to the HAP. We propose time-switching (TS) and power-splitting (PS) schemes for the IRS, where the IRS can harvest energy from the HAP’s signals by switching between energy harvesting and signal reflection in the TS scheme or adjusting its reflection amplitude in the PS scheme. For both the TS and PS schemes, we formulate the sum-rate maximization problems by jointly optimizing the IRS’s phase shifts for both ET and IT and network resource allocation. To address each problem’s non-convexity, we propose a two-step algorithm to obtain the near-optimal solution with high accuracy. To show the structure of resource allocation, we also investigate the optimal solutions for the schemes with random phase shifts. Through numerical results, we show that our proposed schemes can achieve significant system sum-rate gain compared to the baseline scheme without IRS.

135 citations


Journal ArticleDOI
TL;DR: A physics-consistent analytical characterization of the free-space path-loss of a wireless link in the presence of a reconfigurable intelligent surface based on the vector generalization of Green’s theorem is introduced.
Abstract: In this paper, we introduce a physics-consistent analytical characterization of the free-space path-loss of a wireless link in the presence of a reconfigurable intelligent surface. The proposed approach is based on the vector generalization of Green’s theorem. The obtained path-loss model can be applied to two-dimensional homogenized metasurfaces, which are made of sub-wavelength scattering elements and that operate either in reflection or transmission mode. The path-loss is formulated in terms of a computable integral that depends on the transmission distances, the polarization of the radio waves, the size of the surface, and the desired surface transformations. Closed-form expressions are obtained in two asymptotic regimes that are representative of far-field and near-field deployments. Based on the proposed approach, the impact of several design parameters and operating regimes is unveiled.

128 citations


Journal ArticleDOI
TL;DR: Simulation results unveil that there is a non-trivial trade-off between the system sum-rate and the self-sustainability of the IRS and the performance gain achieved by the proposed scheme is saturated with a large number of energy harvesting IRS elements.
Abstract: This paper investigates robust and secure multiuser multiple-input single-output (MISO) downlink communications assisted by a self-sustainable intelligent reflection surface (IRS), which can simultaneously reflect and harvest energy from the received signals. We study the joint design of beamformers at an access point (AP) and the phase shifts as well as the energy harvesting schedule at the IRS for maximizing the system sum-rate. The design is formulated as a non-convex optimization problem taking into account the wireless energy harvesting capability of IRS elements, secure communications, and the robustness against the impact of channel state information (CSI) imperfection. Subsequently, we propose a computationally-efficient iterative algorithm to obtain a suboptimal solution to the design problem. In each iteration, $\mathcal {S}$ -procedure and the successive convex approximation are adopted to handle the intermediate optimization problem. Our simulation results unveil that: 1) there is a non-trivial trade-off between the system sum-rate and the self-sustainability of the IRS; 2) the performance gain achieved by the proposed scheme is saturated with a large number of energy harvesting IRS elements; 3) an IRS equipped with small bit-resolution discrete phase shifters is sufficient to achieve a considerable system sum-rate of the ideal case with continuous phase shifts.

Journal ArticleDOI
TL;DR: Simulation results show that the proposed IRS-assisted MISO system outperforms the MISO case without IRS, and the hybrid NOMA transmission scheme always achieves better performance than orthogonal multiple access.
Abstract: In this paper, we propose a downlink multiple-input single-output (MISO) transmission scheme, which is assisted by an intelligent reflecting surface (IRS) consisting of a large number of passive reflecting elements. In the literature, it has been proved that nonorthogonal multiple access (NOMA) can achieve the same performance as computationally complex dirty paper coding, where the quasi-degradation condition is satisfied, conditioned on the users’ channels fall in the quasi-degradation region. However, in a conventional communication scenario, it is difficult to guarantee the quasi-degradation, because the channels are determined by the propagation environments and cannot be reconfigured. To overcome this difficulty, we focus on an IRS-assisted MISO NOMA system, where the wireless channels can be effectively tuned. We optimize the beamforming vectors and the IRS phase shift matrix for minimizing transmission power. Furthermore, we propose an improved quasi-degradation condition by using IRS, which can ensure that NOMA achieves the capacity region with high possibility. For a comparison, we study zero-forcing beamforming (ZFBF) as well, where the beamforming vectors and the IRS phase shift matrix are also jointly optimized. Comparing NOMA with ZFBF, it is shown that, with the same IRS phase shift matrix and the improved quasi-degradation condition, NOMA always outperforms ZFBF. At the same time, we identify the condition under which ZFBF outperforms NOMA, which motivates the proposed hybrid NOMA transmission. Simulation results show that the proposed IRS-assisted MISO system outperforms the MISO case without IRS, and the hybrid NOMA transmission scheme always achieves better performance than orthogonal multiple access.

Journal ArticleDOI
TL;DR: In this paper, the authors considered an ambient backscatter NOMA system in the presence of a malicious eavesdropper and derived the analytical expressions for the outage probability and the intercept probability.
Abstract: Non-orthogonal multiple access (NOMA) and ambient backscatter communication have been envisioned as two promising technologies for the Internet-of-things due to their high spectral efficiency and energy efficiency. Motivated by this fact, we consider an ambient backscatter NOMA system in the presence of a malicious eavesdropper. Under the realistic assumptions of residual hardware impairments (RHIs), channel estimation errors (CEEs) and imperfect successive interference cancellation (ipSIC), we investigate the physical layer security (PLS) of the ambient backscatter NOMA systems with emphasis on reliability and security. In order to further improve the security of the considered system, an artificial noise scheme is proposed where the radio frequency (RF) source acts as a jammer that transmits interference signals to the legitimate receivers and eavesdropper. On this basis, the analytical expressions for the outage probability (OP) and the intercept probability (IP) are derived. To gain more insights, the asymptotic analysis and corresponding diversity orders for the OP in the high signal-to-noise ratio (SNR) regime are carried out, and the asymptotic behaviors of the IP in the high main-to-eavesdropper ratio (MER) region are explored as well. Finally, the correctness of the theoretical analysis is verified by the Monte Carlo simulation results. These results show that compared with the non-ideal conditions, the reliability of the considered system is high under ideal conditions, but the security is low.

Journal ArticleDOI
TL;DR: Simulation results validate the ability of an RIS in enlarging the channel-gain difference when the users’ original channel conditions are similar and the superiority of the proposed DC-based alternating optimization method in reducing the total transmit power.
Abstract: Power-domain non-orthogonal multiple access (NOMA) has become a promising technology to exploit the new dimension of the power domain to enhance the spectral efficiency of wireless networks. However, most existing NOMA schemes rely on the strong assumption that users’ channel gains are quite different, which may be invalid in practice. To unleash the potential of power-domain NOMA, we propose a reconfigurable intelligent surface (RIS)-empowered NOMA scheme to introduce desirable channel gain differences among the users by adjusting the phase shifts at the RIS. Our goal is to minimize the total transmit power by jointly optimizing the beamforming vectors at the base station, the phase-shift matrix at the RIS, and user ordering. To address challenge due to the highly coupled optimization variables, we present an alternating optimization framework to decompose the non-convex bi-quadratically constrained quadratic problem under a specific user ordering into two rank-one constrained matrices optimization problems via matrix lifting. To accurately detect the feasibility of the non-convex rank-one constraints and improve performance by avoiding early stopping in the alternating optimization procedure, we equivalently represent the rank-one constraint as the difference between nuclear norm and spectral norm. A difference-of-convex (DC) algorithm is further developed to solve the resulting DC programs via successive convex relaxation, followed by establishing the convergence of the proposed DC-based alternating optimization method. We further propose an efficient user ordering scheme with closed-form expressions, considering both the channel conditions and users’ target data rates. Simulation results validate the ability of an RIS in enlarging the channel-gain difference when the users’ original channel conditions are similar and the superiority of the proposed DC-based alternating optimization method in reducing the total transmit power.

Journal ArticleDOI
TL;DR: Simulation results verify the effectiveness of the proposed channel estimation scheme and joint training reflection design for double IRSs, as compared to various benchmark schemes.
Abstract: To achieve the more significant passive beamforming gain in the double-intelligent reflecting surface (IRS) aided system over the conventional single-IRS counterpart, channel state information (CSI) is indispensable in practice but also more challenging to acquire, due to the presence of not only the single- but also double-reflection links that are intricately coupled and also entail more channel coefficients for estimation. In this paper, we propose a new and efficient channel estimation scheme for the double-IRS aided multi-user multiple-input multiple-output (MIMO) communication system to resolve the cascaded CSI of both its single- and double-reflection links. First, for the single-user case, the single- and double-reflection channels are efficiently estimated at the multi-antenna base station (BS) with both the IRSs turned ON (for maximal signal reflection), by exploiting the fact that their cascaded channel coefficients are scaled versions of their superimposed lower-dimensional CSI. Then, the proposed channel estimation scheme is extended to the multi-user case, where given an arbitrary user’s cascaded channel (estimated as in the single-user case), the other users’ cascaded channels can also be expressed as lower-dimensional scaled versions of it and thus efficiently estimated at the BS. Simulation results verify the effectiveness of the proposed channel estimation scheme and joint training reflection design for double IRSs, as compared to various benchmark schemes.

Journal ArticleDOI
TL;DR: This paper investigates the capacity region of a communication network with two users served by an access point (AP), aided by intelligent reflecting surface (IRS), and shows that the centralized deployment generally outperforms the distributed deployment under symmetric channel setups in terms of achievable user rates.
Abstract: Intelligent reflecting surface (IRS) is a new promising technology that is able to reconfigure the wireless propagation channel via smart and passive signal reflection. In this paper, we investigate the capacity region of a two-user communication network with one access point (AP) aided by $M$ IRS elements for enhancing the user-AP channels, where the IRS incurs negligible delay, thus the user-AP channels via the IRS follow the classic discrete memoryless channel model. In particular, we consider two practical IRS deployment strategies that lead to different effective channels between the users and AP, namely, the distributed deployment where the $M$ elements form two IRSs, each deployed in the vicinity of one user, versus the centralized deployment where all the $M$ elements are deployed in the vicinity of the AP. First, we consider the uplink multiple-access channel (MAC) and derive the capacity/achievable rate regions for both deployment strategies under different multiple access schemes. It is shown that the centralized deployment generally outperforms the distributed deployment under symmetric channel setups in terms of achievable user rates. Next, we extend the results to the downlink broadcast channel (BC) by leveraging the celebrated uplink-downlink (or MAC-BC) duality framework, and show that the superior rate performance of centralized over distributed deployment also holds. Numerical results are presented that validate our analysis, and reveal new and useful insights for optimal IRS deployment in wireless networks.

Journal ArticleDOI
TL;DR: Numerical results are provided to show that: i) a significant capacity and rate region improvement can be achieved by using IRS; ii) the capacity gain can be further improved by dynamically configuring the IRS reflection matrix; and iii) a rate region inner bound for the general case is derived.
Abstract: The fundamental capacity limits of intelligent reflecting surface (IRS)-assisted multi-user wireless communication systems are investigated in this article. Specifically, the capacity and rate regions for both capacity-achieving non-orthogonal multiple access (NOMA) and orthogonal multiple access (OMA) transmission schemes are characterized by jointly optimizing the IRS reflection matrix and wireless resource allocation under the constraints of a maximum number of IRS reconfiguration times. In NOMA, all users are served in the same resource blocks by employing superposition coding and successive interference cancelation techniques. In OMA, all users are served by being allocated orthogonal resource blocks of different sizes. For NOMA, the ideal case with an asymptotically large number of IRS reconfiguration times is firstly considered, where the optimal solution is obtained by employing the Lagrange duality method. Inspired by this result, an inner bound of the capacity region for the general case with a finite number of IRS reconfiguration times is derived. For OMA, the optimal transmission strategy for the ideal case is to serve each individual user alternatingly with its effective channel power gain maximized. Based on this result, a rate region inner bound for the general case is derived. Finally, numerical results are provided to show that: i) a significant capacity and rate region improvement can be achieved by using IRS; ii) the capacity gain can be further improved by dynamically configuring the IRS reflection matrix.

Journal ArticleDOI
TL;DR: Simulation results demonstrate that the proposed algorithm can offer significant average sum-rate enhancement compared to that achieved using the ideal IRS reflection model, which confirms the importance of the use of the practical model for the design of wideband systems.
Abstract: Intelligent reflecting surface (IRS) is envisioned as a revolutionary technology for future wireless communication systems since it can intelligently change radio environment and integrate it into wireless communication optimization However, most existing works adopted an ideal IRS reflection model, which is impractical and can cause significant performance degradation in realistic wideband systems To address this issue, we first study the dual phase- and amplitude-squint effect of reflected signals and present a simplified practical IRS reflection model for wideband signals Then, an IRS enhanced wideband multiuser multi-input single-output orthogonal frequency division multiplexing (MU-MISO-OFDM) system is investigated We aim to jointly design the transmit beamformer and IRS reflection for the case of using both continuous and discrete phase shifters to maximize the average sum-rate over all subcarriers By exploiting the relationship between sum-rate maximization and mean square error (MSE) minimization, the original problem is equivalently transformed into a multi-block/variable problem, which can be efficiently solved by the block coordinate descent (BCD) method Complexity and convergence for both cases are analyzed or illustrated Simulation results demonstrate that the proposed algorithm can offer significant average sum-rate enhancement compared to that achieved using the ideal IRS reflection model, which confirms the importance of the use of the practical model for the design of wideband systems

Journal ArticleDOI
TL;DR: The proposed designs provide an attractive solution to RIS-aided MIMO systems by successively determining the required phase shifts of each reflecting element of the RIS and the digital baseband precoder of the transmitter, only relying on the channel state information (CSI) of the subchannels.
Abstract: Reconfigurable intelligent surfaces (RISs), consisting of many low-cost elements that reflect the incident waves by an adjustable phase shift, have attracted sudden attention for their potential of reconfiguring the signal propagation environment and enhancing the performance of wireless networks. The passive nature of RISs is indeed beneficial, but the lack of radio frequency (RF) chains at the RIS has made channel estimation extremely challenging. We face this challenge by proposing a joint channel estimation and transmit precoding framework for RIS-aided multiple-input multiple-output (MIMO) systems. Specifically, the effective cascaded channel of the reflected transmitter-RIS-receiver link is decomposed into multiple subchannels, each of which corresponds to a single RIS element. Then our joint RIS-transmitter precoding model is formulated for the individual subchannels of each reflecting element. Finally, we develop a two-stage precoding design for successively determining the required phase shifts of each reflecting element of the RIS and the digital baseband precoder of the transmitter, only relying on the channel state information (CSI) of the subchannels. The performance of the proposed subchannel estimation and joint precoding method is evaluated by extensive simulations. Our numerical results show that the proposed designs provide an attractive solution to RIS-aided MIMO systems.

Journal ArticleDOI
TL;DR: This paper proposes to jointly design the active transmit precoding at the access point (AP) and passive reflection coefficients of the IRS, each consisting of not only the conventional phase shift and also the newly exploited amplitude variation.
Abstract: Intelligent reflecting surface (IRS) is a promising new paradigm to achieve high spectral and energy efficiency for future wireless networks by reconfiguring the wireless signal propagation via passive reflection. To reap the promising gains of IRS, channel state information (CSI) is essential, whereas channel estimation errors are inevitable in practice due to limited channel training resources. In this paper, in order to optimize the performance of IRS-aided multiuser communications with imperfect CSI, we propose to jointly design the active transmit precoding at the access point (AP) and passive reflection coefficients of the IRS, each consisting of not only the conventional phase shift and also the newly exploited amplitude variation. First, the achievable rate of each user is derived assuming a practical IRS channel estimation method, which shows that the interference due to CSI errors is intricately related to the AP transmit precoders, the channel training power and the IRS reflection coefficients during both channel training and data transmission. Next, for the single-user case, by combining the benefits of the penalty method, Dinkelbach method and block successive upper-bound minimization (BSUM) method, a new penalized Dinkelbach-BSUM algorithm is proposed to optimize the IRS reflection coefficients for maximizing the achievable data transmission rate subjected to CSI errors; while for the multiuser case, a new penalty dual decomposition (PDD)-based algorithm is proposed to maximize the users’ weighted sum-rate. Finally, simulation results are presented to validate the effectiveness of our proposed algorithms as compared to benchmark schemes. In particular, useful insights are drawn to characterize the effect of IRS reflection amplitude control (with/without the conventional phase-shift control) on the system performance under imperfect CSI.

Journal ArticleDOI
TL;DR: A prior-aided Gaussian mixture LAMP (GM-LAMP) based beamspace channel estimation scheme based on a new shrinkage function to refine the AMP algorithm that can achieve better channel estimation accuracy than existing schemes.
Abstract: Millimeter-wave massive multiple-input multiple-output (MIMO) can use a lens antenna array to considerably reduce the number of radio frequency (RF) chains, but channel estimation is challenging due to the number of RF chains is much smaller than that of antennas. By exploiting the sparsity of beamspace channels, the beamspace channel estimation can be formulated as a sparse signal recovery problem, which can be solved by the classical iterative algorithm named approximate message passing (AMP), and its corresponding version learned AMP (LAMP) realized by a deep neural network (DNN). However, these existing schemes cannot achieve satisfactory estimation accuracy. To improve the channel estimation performance, we propose a prior-aided Gaussian mixture LAMP (GM-LAMP) based beamspace channel estimation scheme in this paper. Specifically, based on the prior information that beamspace channel elements can be modeled by the Gaussian mixture distribution, we first derive a new shrinkage function to refine the AMP algorithm. Then, by replacing the original shrinkage function in the LAMP network with the derived Gaussian mixture shrinkage function, a prior-aided GM-LAMP network is developed to estimate the beamspace channel more accurately. Simulation results by using both the theoretical channel model and the ray-tracing based channel dataset show that, the proposed GM-LAMP network can achieve better channel estimation accuracy than existing schemes.

Journal ArticleDOI
TL;DR: In this paper, the performance of an integrated UAV-intelligent reflecting surface (IRS) relaying system is analyzed in terms of outage probability, ergodic capacity, and energy efficiency.
Abstract: This paper presents a theoretical framework to analyze the performance of an integrated unmanned aerial vehicle (UAV)-intelligent reflecting surface (IRS) relaying system in which the IRS provides an additional degree of freedom combined with the flexible deployment of full-duplex UAV to enhance communication between ground nodes. Our framework considers three different transmission modes: (i) UAV-only mode, (ii) IRS-only mode, and (iii) integrated UAV-IRS mode to achieve spectral and energy-efficient relaying. For the proposed modes, we provide exact and approximate expressions for the end-to-end outage probability, ergodic capacity, and energy efficiency (EE) in closed-form. We use the derived expressions to optimize key system parameters such as the UAV altitude and the number of elements on the IRS considering different modes. We formulate the problems in the form of fractional programming (e.g. single ratio, sum of multiple ratios or maximization-minimization of ratios) and devise optimal algorithms using quadratic transformations. Furthermore, we derive an analytic criterion to optimally select different transmission modes to maximize ergodic capacity and EE for a given number of IRS elements. Numerical results validate the derived expressions. The solutions obtained from the proposed optimization algorithms are compared with those obtained through exhaustive search. Insights are drawn related to the different communication modes, optimal number of IRS elements, and optimal UAV height.

Journal ArticleDOI
TL;DR: This article investigates the security problems for dual UAV-assisted mobile edge computing systems, where one UAV is invoked to help the ground terminal devices (TDs) to compute the offloaded tasks and the other one acts as a jammer to suppress the vicious eavesdroppers.
Abstract: Unmanned aerial vehicle (UAV) has been widely applied in internet-of-things (IoT) scenarios while the security for UAV communications remains a challenging problem due to the broadcast nature of the line-of-sight (LoS) wireless channels. This article investigates the security problems for dual UAV-assisted mobile edge computing (MEC) systems, where one UAV is invoked to help the ground terminal devices (TDs) to compute the offloaded tasks and the other one acts as a jammer to suppress the vicious eavesdroppers. In our framework, minimum secure computing capacity maximization problems are proposed for both the time division multiple access (TDMA) scheme and non-orthogonal multiple access (NOMA) scheme by jointly optimizing the communication resources, computation resources, and UAVs’ trajectories. The formulated problems are non-trivial and challenging to be solved due to the highly coupled variables. To tackle these problems, we first transform them into more tractable ones then a block coordinate descent based algorithm and a penalized block coordinate descent based algorithm are proposed to solve the problems for TDMA and NOMA schemes, respectively. Finally, numerical results show that the security computing capacity performance of the systems is enhanced by the proposed algorithms as compared with the benchmarks. Meanwhile, the NOMA scheme is superior to the TDMA scheme for security improvement.

Journal ArticleDOI
TL;DR: An effective second-order cone programming (SOCP)-alternating direction method of multipliers (ADMM) based algorithm to obtain the locally optimal solution for reconfigurable intelligent surfaces (RISs) is proposed.
Abstract: Considering reconfigurable intelligent surfaces (RISs), we study a multi-cluster multiple-input-single-output (MISO) non-orthogonal multiple access (NOMA) downlink communication network. In the network, RISs assist the communication from the base station (BS) to all users by passive beamforming. Our goal is to minimize the total transmit power by jointly optimizing the active beamforming matrices at the BS and the reflection coefficient vector at the RISs. Because of the constraints on the RIS reflection amplitudes and phase shifts, the formulated quadratically constrained quadratic problem is highly non-convex. For the aforementioned problem, the conventional semidefinite programming (SDP) based algorithm has prohibitively high computational complexity and deteriorating performance. Here, we propose an effective second-order cone programming (SOCP)-alternating direction method of multipliers (ADMM) based algorithm to obtain the locally optimal solution. To reduce the computational complexity, we also propose a low-complexity zero-forcing based suboptimal algorithm. It is shown through simulation results that our proposed SOCP-ADMM based algorithm achieves significant performance gain over the conventional SDP based algorithm. Furthermore, when the target transmission rates of central and cell-edge users are 0.5 bps/Hz, our proposed NOMA RIS-aided system with 32 RIS elements has about 2.5 dB performance gain over the conventional massive multiple-input-multiple-output system with 64 transmit antennas.

Journal ArticleDOI
TL;DR: The results show that the proposed DeepBAN communication framework can achieve energy-efficient, reliable, and low-latency data transmission in dynamic WBANs, which can improve the system energy efficiency by 15% compared with the stochastic scheduling scheme.
Abstract: Wireless body area network (WBAN) has become a promising technology, which can be widely applied in health monitoring, and so on. However, the performance of a practical WBAN may severely suffer from the degradation caused by dynamic nature of wireless channels with the movements of human body. Traditional communication frameworks cannot catch up with the channel variation of dynamic WBANs, which may severely degrade the performance, so an accurate channel prediction model is necessary for developing an efficient transmission strategy. In this paper, we propose a DeepBAN communication framework for dynamic WBANs. In our proposed framework, a temporal convolution network (TCN) based deep learning approach is adopted for channel prediction, the computationally intensive task of which is processed by mobile edge computing (MEC), to reduce the response time. Given the predicted channel conditions, we propose a joint power control, time-slot allocation, and relay selection algorithm to maximize the energy efficiency of the system, taking into account the transmission reliability and end-to-end latency requirements. We evaluate the performance of DeepBAN, and the results show that it can achieve energy-efficient, reliable, and low-latency data transmission in dynamic WBANs, which can improve the system energy efficiency by 15% compared with the stochastic scheduling scheme.

Journal ArticleDOI
TL;DR: This paper aims to maximize the received signal-to-noise ratio (SNR) taking into account the impact of hardware impairments, where the source transmit beamforming and the IRS reflect beamforming are jointly designed under the proposed optimization framework.
Abstract: In this paper, we focus on intelligent reflecting surface (IRS) assisted multi-antenna communications with transceiver hardware impairments encountered in practice. In particular, we aim to maximize the received signal-to-noise ratio (SNR) taking into account the impact of hardware impairments, where the source transmit beamforming and the IRS reflect beamforming are jointly designed under the proposed optimization framework. To circumvent the non-convexity of the formulated design problem, we first derive a closed-form optimal solution to the source transmit beamforming. Then, for the optimization of IRS reflect beamforming, we obtain an upper bound to the optimal objective value via solving a single convex problem. A low-complexity minorization-maximization (MM) algorithm was developed to approach the upper bound. Simulation results demonstrate that the proposed beamforming design is more robust to the hardware impairments than that of the conventional SNR maximized scheme. Moreover, compared to the scenario without deploying an IRS, the performance gain brought by incorporating the hardware impairments is more evident for the IRS-aided communications.

Journal ArticleDOI
TL;DR: In this article, the minimum achievable rate of cell-edge users was maximized by jointly optimizing the transmit beamforming at the BSs and the phase shifts at the RIS, where an RIS is deployed to assist the joint processing coordinated multipoint (JP-CoMP) transmission from multiple base stations (BSs) to multiple BSs.
Abstract: This article investigates intelligent reflecting surface (IRS)-aided multicell wireless networks, where an IRS is deployed to assist the joint processing coordinated multipoint (JP-CoMP) transmission from multiple base stations (BSs) to multiple cell-edge users. By taking into account the fairness among cell-edge users, we aim at maximizing the minimum achievable rate of cell-edge users by jointly optimizing the transmit beamforming at the BSs and the phase shifts at the IRS. As a compromise approach, we transform the non-convex max-min problem into an equivalent form based on the mean-square error method, which facilities the design of an efficient suboptimal iterative algorithm. In addition, we investigate two scenarios, namely the single-user system and the multiuser system. For the former scenario, the optimal transmit beamforming is obtained based on the dual subgradient method, while the phase shift matrix is optimized based on the Majorization-Minimization method. For the latter scenario, the transmit beamforming matrix and phase shift matrix are obtained by the second-order cone programming and semidefinite relaxation techniques, respectively. Numerical results demonstrate the significant performance improvement achieved by deploying an IRS. Furthermore, the proposed JP-CoMP design significantly outperforms the conventional coordinated scheduling/coordinated beamforming coordinated multipoint (CS/CB-CoMP) design in terms of max-min rate.

Journal ArticleDOI
TL;DR: An optimization algorithm to configure the IRSs is proposed, aimed at maximizing the network sum-rate by exploiting only the statistical characterization of the locations of the mobile users, which does not require the estimation of either instantaneous channel state information (CSI) or second-order channel statistics for IRS optimization.
Abstract: In this paper, we consider a multi-user multiple-input multiple-output (MIMO) system aided by multiple intelligent reflecting surfaces (IRSs) that are deployed to increase the coverage and, possibly, the rank of the channel. We propose an optimization algorithm to configure the IRSs, which is aimed at maximizing the network sum-rate by exploiting only the statistical characterization of the locations of the mobile users. As a consequence, the proposed approach does not require the estimation of either instantaneous channel state information (CSI) or second-order channel statistics for IRS optimization, thus significantly relaxing (or even avoiding) the need of frequently reconfiguring the IRSs, which constitutes one of the most critical issues in IRS-assisted systems. Numerical results confirm the validity of the proposed approach. It is shown, in particular, that IRS-assisted wireless systems that are optimized based on statistical position information still provide large performance gains as compared to the baseline scenarios in which no IRSs are deployed.

Journal ArticleDOI
TL;DR: In this paper, a beamforming design problem to achieve max-min fairness among multiple co-channel multicast groups with imperfect channel state information at the transmitter (CSIT) was studied.
Abstract: This work focuses on the promising Rate-Splitting Multiple Access (RSMA) and its beamforming design problem to achieve max-min fairness (MMF) among multiple co-channel multicast groups with imperfect channel state information at the transmitter (CSIT). Contrary to the conventional linear precoding (NoRS) that relies on fully treating any residual interference as noise, we consider a novel multigroup multicast beamforming strategy based on RSMA. RSMA relies on linearly precoded Rate-Splitting (RS) at the transmitter and Successive Interference Cancellation (SIC) at the receivers, and has recently been shown to enable a flexible framework for non-orthogonal transmission and robust interference management in multi-antenna wireless networks. In this work, we characterize the MMF Degrees-of-Freedom (DoF) achieved by RS and NoRS in multigroup multicast with imperfect CSIT and demonstrate the benefits of RS strategies for both underloaded and overloaded scenarios. Motivated by the DoF analysis, we then formulate a generic transmit power constrained optimization problem to achieve MMF rate performance. The superiority of RS-based multigroup multicast beamforming compared with NoRS is demonstrated via simulations in both terrestrial and multibeam satellite systems. In particular, due to the characteristics and challenges of multibeam satellite communications, our proposed RS strategy is shown promising to manage its inter-beam interference.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated a communication system assisted by multiple UAV-mounted base stations (BSs), aiming to minimize the number of required UAVs and to improve the coverage rate by optimizing the three-dimensional (3D) positions of UAV, user clustering, and frequency band allocation.
Abstract: Recently, unmanned aerial vehicles (UAVs) have attracted lots of attention because of their high mobility and low cost. This article investigates a communication system assisted by multiple UAV-mounted base stations (BSs), aiming to minimize the number of required UAVs and to improve the coverage rate by optimizing the three-dimensional (3D) positions of UAVs, user clustering, and frequency band allocation. Compared with the existing works, the constraints of the required quality of service (QoS) and the service ability of each UAV are considered, which makes the problem more challenging. A three-step method is developed to solve the formulated mixed-integer programming problem. First, to ensure that each UAV can serve more number of users, the maximum service radius of UAVs is derived according to the required minimum power of the received signals for the users. Second, an algorithm based on artificial bee colony (ABC) algorithm is proposed to minimize the number of required UAVs. Third, the 3D position and the frequency band of each UAV are designed to increase the power of the target signals and to reduce the interference. Finally, simulation results are presented to demonstrate the superiority of the proposed solution for UAV-assisted communication systems.