scispace - formally typeset
Search or ask a question
JournalISSN: 2333-9403

IEEE Transactions on Computational Imaging 

Institute of Electrical and Electronics Engineers
About: IEEE Transactions on Computational Imaging is an academic journal published by Institute of Electrical and Electronics Engineers. The journal publishes majorly in the area(s): Computer science & Iterative reconstruction. It has an ISSN identifier of 2333-9403. Over the lifetime, 583 publications have been published receiving 14929 citations.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that the quality of the results improves significantly with better loss functions, even when the network architecture is left unchanged, and a novel, differentiable error function is proposed.
Abstract: Neural networks are becoming central in several areas of computer vision and image processing and different architectures have been proposed to solve specific problems. The impact of the loss layer of neural networks, however, has not received much attention in the context of image processing: the default and virtually only choice is $\ell _2$ . In this paper, we bring attention to alternative choices for image restoration. In particular, we show the importance of perceptually-motivated losses when the resulting image is to be evaluated by a human observer. We compare the performance of several losses, and propose a novel, differentiable error function. We show that the quality of the results improves significantly with better loss functions, even when the network architecture is left unchanged.

1,758 citations

Journal ArticleDOI
TL;DR: This paper proposes a CNN that is trained on both the spatial and the temporal dimensions of videos to enhance their spatial resolution and shows that by using images to pretrain the model, a relatively small video database is sufficient for the training of the model to achieve and improve upon the current state-of-the-art.
Abstract: Convolutional neural networks (CNN) are a special type of deep neural networks (DNN). They have so far been successfully applied to image super-resolution (SR) as well as other image restoration tasks. In this paper, we consider the problem of video super-resolution. We propose a CNN that is trained on both the spatial and the temporal dimensions of videos to enhance their spatial resolution. Consecutive frames are motion compensated and used as input to a CNN that provides super-resolved video frames as output. We investigate different options of combining the video frames within one CNN architecture. While large image databases are available to train deep neural networks, it is more challenging to create a large video database of sufficient quality to train neural nets for video restoration. We show that by using images to pretrain our model, a relatively small video database is sufficient for the training of our model to achieve and even improve upon the current state-of-the-art. We compare our proposed approach to current video as well as image SR algorithms.

541 citations

Journal ArticleDOI
TL;DR: It is shown that for any denoising algorithm satisfying an asymptotic criteria, called bounded denoisers, Plug-and-Play ADMM converges to a fixed point under a continuation scheme.
Abstract: Alternating direction method of multiplier (ADMM) is a widely used algorithm for solving constrained optimization problems in image restoration. Among many useful features, one critical feature of the ADMM algorithm is its modular structure, which allows one to plug in any off-the-shelf image denoising algorithm for a subproblem in the ADMM algorithm. Because of the plug-in nature, this type of ADMM algorithms is coined the name “Plug-and-Play ADMM.” Plug-and-Play ADMM has demonstrated promising empirical results in a number of recent papers. However, it is unclear under what conditions and by using what denoising algorithms would it guarantee convergence. Also, since Plug-and-Play ADMM uses a specific way to split the variables, it is unclear if fast implementation can be made for common Gaussian and Poissonian image restoration problems. In this paper, we propose a Plug-and-Play ADMM algorithm with provable fixed-point convergence. We show that for any denoising algorithm satisfying an asymptotic criteria, called bounded denoisers, Plug-and-Play ADMM converges to a fixed point under a continuation scheme. We also present fast implementations for two image restoration problems on superresolution and single-photon imaging. We compare Plug-and-Play ADMM with state-of-the-art algorithms in each problem type and demonstrate promising experimental results of the algorithm.

509 citations

Journal ArticleDOI
TL;DR: This paper presents an algorithm for electron tomographic reconstruction and sparse image interpolation that exploits the nonlocal redundancy in images, and demonstrates that the algorithm produces higher quality reconstructions on both simulated and real electron microscope data, along with improved convergence properties compared to other methods.
Abstract: Many material and biological samples in scientific imaging are characterized by nonlocal repeating structures. These are studied using scanning electron microscopy and electron tomography. Sparse sampling of individual pixels in a two-dimensional image acquisition geometry, or sparse sampling of projection images with large tilt increments in a tomography experiment, can enable high speed data acquisition and minimize sample damage caused by the electron beam. In this paper, we present an algorithm for electron tomographic reconstruction and sparse image interpolation that exploits the nonlocal redundancy in images. We adapt a framework, termed plug-and-play priors, to solve these imaging problems in a regularized inversion setting. The power of the plug-and-play approach is that it allows a wide array of modern denoising algorithms to be used as a “prior model” for tomography and image interpolation. We also present sufficient mathematical conditions that ensure convergence of the plug-and-play approach, and we use these insights to design a new nonlocal means denoising algorithm. Finally, we demonstrate that the algorithm produces higher quality reconstructions on both simulated and real electron microscope data, along with improved convergence properties compared to other methods.

267 citations

Journal ArticleDOI
TL;DR: Experimental results using in vivo data for single/multicoil imaging as well as dynamic imaging confirmed that the proposed method outperforms the state-of-the-art pMRI and CS-MRI.
Abstract: Parallel MRI (pMRI) and compressed sensing MRI (CS-MRI) have been considered as two distinct reconstruction problems. Inspired by recent k-space interpolation methods, an annihilating filter-based low-rank Hankel matrix approach is proposed as a general framework for sparsity-driven k-space interpolation method which unifies pMRI and CS-MRI. Specifically, our framework is based on a novel observation that the transform domain sparsity in the primary space implies the low-rankness of weighted Hankel matrix in the reciprocal space. This converts pMRI and CS-MRI to a k-space interpolation problem using a structured matrix completion. Experimental results using in vivo data for single/multicoil imaging as well as dynamic imaging confirmed that the proposed method outperforms the state-of-the-art pMRI and CS-MRI.

252 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202388
2022156
202193
2020127
201951
201854