scispace - formally typeset
Search or ask a question
JournalISSN: 0098-3063

IEEE Transactions on Consumer Electronics 

Institute of Electrical and Electronics Engineers
About: IEEE Transactions on Consumer Electronics is an academic journal published by Institute of Electrical and Electronics Engineers. The journal publishes majorly in the area(s): Data compression & Orthogonal frequency-division multiplexing. It has an ISSN identifier of 0098-3063. Over the lifetime, 4968 publications have been published receiving 115078 citations. The journal is also known as: Institute of Electrical and Electronics Engineers transactions on consumer electronics & Consumer electronics, IEEE transactions on.


Papers
More filters
Journal ArticleDOI
TL;DR: The author provides an overview of the JPEG standard, and focuses in detail on the Baseline method, which has been by far the most widely implemented JPEG method to date, and is sufficient in its own right for a large number of applications.
Abstract: A joint ISO/CCITT committee known as JPEG (Joint Photographic Experts Group) has been working to establish the first international compression standard for continuous-tone still images, both grayscale and color. JPEG's proposed standard aims to be generic, to support a wide variety of applications for continuous-tone images. To meet the differing needs of many applications, the JPEG standard includes two basic compression methods, each with various modes of operation. A DCT (discrete cosine transform)-based method is specified for 'lossy' compression, and a predictive method for 'lossless' compression. JPEG features a simple lossy technique known as the Baseline method, a subset of the other DCT-based modes of operation. The Baseline method has been by far the most widely implemented JPEG method to date, and is sufficient in its own right for a large number of applications. The author provides an overview of the JPEG standard, and focuses in detail on the Baseline method. >

3,425 citations

Journal ArticleDOI
TL;DR: Based on numerical analyses, it is shown that the proposed indoor visible-light communication system utilizing white LED lights is expected to be the indoor communication of the next generation.
Abstract: White LED offers advantageous properties such as high brightness, reliability, lower power consumption and long lifetime. White LEDs are expected to serve in the next generation of lamps. An indoor visible-light communication system utilizing white LED lights has been proposed from our laboratory. In the proposed system, these devices are used not only for illuminating rooms but also for an optical wireless communication system. Generally, plural lights are installed in our room. So, their optical path difference must be considered. In this paper, we discuss about the influence of interference and reflection. Based on numerical analyses, we show that the system is expected to be the indoor communication of the next generation.

2,913 citations

Journal ArticleDOI
Yeong-Taeg Kim1
TL;DR: It is shown mathematically that the proposed algorithm preserves the mean brightness of a given image significantly well compared to typical histogram equalization while enhancing the contrast and, thus, provides a natural enhancement that can be utilized in consumer electronic products.
Abstract: Histogram equalization is widely used for contrast enhancement in a variety of applications due to its simple function and effectiveness. Examples include medical image processing and radar signal processing. One drawback of the histogram equalization can be found on the fact that the brightness of an image can be changed after the histogram equalization, which is mainly due to the flattening property of the histogram equalization. Thus, it is rarely utilized in consumer electronic products such as TV where preserving the original input brightness may be necessary in order not to introduce unnecessary visual deterioration. This paper proposes a novel extension of histogram equalization to overcome such a drawback of histogram equalization. The essence of the proposed algorithm is to utilize independent histogram equalizations separately over two subimages obtained by decomposing the input image based on its mean with a constraint that the resulting equalized subimages are bounded by each other around the input mean. It is shown mathematically that the proposed algorithm preserves the mean brightness of a given image significantly well compared to typical histogram equalization while enhancing the contrast and, thus, provides a natural enhancement that can be utilized in consumer electronic products.

1,562 citations

Journal ArticleDOI
TL;DR: It is interesting to note that JPEG2000 is being designed to address the requirements of a diversity of applications, e.g. Internet, color facsimile, printing, scanning, digital photography, remote sensing, mobile applications, medical imagery, digital library and E-commerce.
Abstract: With the increasing use of multimedia technologies, image compression requires higher performance as well as new features. To address this need in the specific area of still image encoding, a new standard is currently being developed, the JPEG2000. It is not only intended to provide rate-distortion and subjective image quality performance superior to existing standards, but also to provide features and functionalities that current standards can either not address efficiently or in many cases cannot address at all. Lossless and lossy compression, embedded lossy to lossless coding, progressive transmission by pixel accuracy and by resolution, robustness to the presence of bit-errors and region-of-interest coding, are some representative features. It is interesting to note that JPEG2000 is being designed to address the requirements of a diversity of applications, e.g. Internet, color facsimile, printing, scanning, digital photography, remote sensing, mobile applications, medical imagery, digital library and E-commerce.

1,485 citations

Journal ArticleDOI
TL;DR: The simulation results indicate that the algorithm can not only enhance the image information effectively but also preserve the original image luminance well enough to make it possible to be used in a video system directly.
Abstract: Histogram equalization is a simple and effective image enhancing technique. But in some conditions, the luminance of an image may be changed significantly after the equalizing process, this is why it has never been utilized in a video system in the past. A novel histogram equalization technique, equal area dualistic sub-image histogram equalization, is put forward in this paper. First, the image is decomposed into two equal area sub-images based on its original probability density function. Then the two sub-images are equalized respectively. Finally, we obtain the results after the processed sub-images are composed into one image. The simulation results indicate that the algorithm can not only enhance the image information effectively but also preserve the original image luminance well enough to make it possible to be used in a video system directly.

1,039 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023151
202273
202124
202042
201957
201856