Journal•ISSN: 1545-5971
IEEE Transactions on Dependable and Secure Computing
IEEE Computer Society
About: IEEE Transactions on Dependable and Secure Computing is an academic journal published by IEEE Computer Society. The journal publishes majorly in the area(s): Computer science & Encryption. It has an ISSN identifier of 1545-5971. Over the lifetime, 1630 publications have been published receiving 61312 citations. The journal is also known as: Transactions on Dependable and Secure Computing & ITDSCM.
Papers published on a yearly basis
Papers
More filters
TL;DR: The aim is to explicate a set of general concepts, of relevance across a wide range of situations and, therefore, helping communication and cooperation among a number of scientific and technical communities, including ones that are concentrating on particular types of system, of system failures, or of causes of systems failures.
Abstract: This paper gives the main definitions relating to dependability, a generic concept including a special case of such attributes as reliability, availability, safety, integrity, maintainability, etc. Security brings in concerns for confidentiality, in addition to availability and integrity. Basic definitions are given first. They are then commented upon, and supplemented by additional definitions, which address the threats to dependability and security (faults, errors, failures), their attributes, and the means for their achievement (fault prevention, fault tolerance, fault removal, fault forecasting). The aim is to explicate a set of general concepts, of relevance across a wide range of situations and, therefore, helping communication and cooperation among a number of scientific and technical communities, including ones that are concentrating on particular types of system, of system failures, or of causes of system failures.
4,695 citations
TL;DR: This paper has implemented a proof-of-concept for decentralized energy trading system using blockchain technology, multi-signatures, and anonymous encrypted messaging streams, enabling peers to anonymously negotiate energy prices and securely perform trading transactions.
Abstract: Smart grids equipped with bi-directional communication flow are expected to provide more sophisticated consumption monitoring and energy trading. However, the issues related to the security and privacy of consumption and trading data present serious challenges. In this paper we address the problem of providing transaction security in decentralized smart grid energy trading without reliance on trusted third parties. We have implemented a proof-of-concept for decentralized energy trading system using blockchain technology, multi-signatures, and anonymous encrypted messaging streams, enabling peers to anonymously negotiate energy prices and securely perform trading transactions. We conducted case studies to perform security analysis and performance evaluation within the context of the elicited security and privacy requirements.
837 citations
TL;DR: Remote physical device fingerprinting is introduced, or fingerprinting a physical device, as opposed to an operating system or class of devices, remotely, and without the fingerprinted device's known cooperation, by exploiting small, microscopic deviations in device hardware: clock skews.
Abstract: We introduce the area of remote physical device fingerprinting, or fingerprinting a physical device, as opposed to an operating system or class of devices, remotely, and without the fingerprinted device's known cooperation. We accomplish this goal by exploiting small, microscopic deviations in device hardware: clock skews. Our techniques do not require any modification to the fingerprinted devices. Our techniques report consistent measurements when the measurer is thousands of miles, multiple hops, and tens of milliseconds away from the fingerprinted device and when the fingerprinted device is connected to the Internet from different locations and via different access technologies. Further, one can apply our passive and semipassive techniques when the fingerprinted device is behind a NAT or firewall, and. also when the device's system time is maintained via NTP or SNTP. One can use our techniques to obtain information about whether two devices on the Internet, possibly shifted in time or IP addresses, are actually the same physical device. Example applications include: computer forensics; tracking, with some probability, a physical device as it connects to the Internet from different public access points; counting the number of devices behind a NAT even when the devices use constant or random IP IDs; remotely probing a block of addresses to determine if the addresses correspond to virtual hosts, e.g., as part of a virtual honeynet; and unanonymizing anonymized network traces.
770 citations
TL;DR: In this paper, the authors focus on the classification of human, bot, and cyborg accounts on Twitter and conduct a set of large-scale measurements with a collection of over 500,000 accounts.
Abstract: Twitter is a new web application playing dual roles of online social networking and microblogging. Users communicate with each other by publishing text-based posts. The popularity and open structure of Twitter have attracted a large number of automated programs, known as bots, which appear to be a double-edged sword to Twitter. Legitimate bots generate a large amount of benign tweets delivering news and updating feeds, while malicious bots spread spam or malicious contents. More interestingly, in the middle between human and bot, there has emerged cyborg referred to either bot-assisted human or human-assisted bot. To assist human users in identifying who they are interacting with, this paper focuses on the classification of human, bot, and cyborg accounts on Twitter. We first conduct a set of large-scale measurements with a collection of over 500,000 accounts. We observe the difference among human, bot, and cyborg in terms of tweeting behavior, tweet content, and account properties. Based on the measurement results, we propose a classification system that includes the following four parts: 1) an entropy-based component, 2) a spam detection component, 3) an account properties component, and 4) a decision maker. It uses the combination of features extracted from an unknown user to determine the likelihood of being a human, bot, or cyborg. Our experimental evaluation demonstrates the efficacy of the proposed classification system.
600 citations
TL;DR: Analysis of failure data collected at two large high-performance computing sites finds that average failure rates differ wildly across systems, ranging from 20-1000 failures per year, and that time between failures is modeled well by a Weibull distribution with decreasing hazard rate.
Abstract: Designing highly dependable systems requires a good understanding of failure characteristics. Unfortunately, little raw data on failures in large IT installations are publicly available. This paper analyzes failure data collected at two large high-performance computing sites. The first data set has been collected over the past nine years at Los Alamos National Laboratory (LANL) and has recently been made publicly available. It covers 23,000 failures recorded on more than 20 different systems at LANL, mostly large clusters of SMP and NUMA nodes. The second data set has been collected over the period of one year on one large supercomputing system comprising 20 nodes and more than 10,000 processors. We study the statistics of the data, including the root cause of failures, the mean time between failures, and the mean time to repair. We find, for example, that average failure rates differ wildly across systems, ranging from 20-1000 failures per year, and that time between failures is modeled well by a Weibull distribution with decreasing hazard rate. From one system to another, mean repair time varies from less than an hour to more than a day, and repair times are well modeled by a lognormal distribution.
575 citations