Journal•ISSN: 0018-9383

# IEEE Transactions on Electron Devices

Institute of Electrical and Electronics Engineers

About: IEEE Transactions on Electron Devices is an academic journal. The journal publishes majorly in the area(s): MOSFET & Transistor. It has an ISSN identifier of 0018-9383. Over the lifetime, 23321 publications have been published receiving 652565 citations.

##### Papers published on a yearly basis

##### Papers

More filters

••

[...]

Bell Labs

^{1}TL;DR: In this article, the authors presented theoretical calculations of the large-signal admittance and efficiency achievable in a silicon p-n-v-ns Read IMPATT diode.

Abstract: This paper presents theoretical calculations of the large-signal admittance and efficiency achievable in a silicon p-n-v-ns Read IMPATT diode. A simplified theory is employed to obtain a starting design. This design is then modified to achieve higher efficiency operation as specific device limitations are reached in large-signal (computer) operation. Self-consistent numerical solutions are obtained for equations describing carrier transport, carrier generation, and space-charge balance. The solutions describe the evolution in time of the diode and its associated resonant circuit. Detailed solutions are presented of the hole and electron concentrations, electric field, and terminal current and voltage at various points in time during a cycle of oscillation. Large-signal values of the diode's negative conductance, susceptance, average voltage, and power-generating efficiency are presented as a function of oscillation amplitude for a fixed average current density. For the structure studied, the largest microwave power-generating efficiency (18 percent at 9.6 GHz) has been obtained at a current density of 200 A/cm2, but efficiencies near 10 percent were obtained over a range of current density from 100 to 1000 A/cm2.

1,960 citations

••

[...]

TL;DR: In this paper, a self-aligned double-gate MOSFET, FinFET was proposed by using boron-doped Si/sub 04/Ge/sub 06/ as a gate material.

Abstract: MOSFETs with gate length down to 17 nm are reported To suppress the short channel effect, a novel self-aligned double-gate MOSFET, FinFET, is proposed By using boron-doped Si/sub 04/Ge/sub 06/ as a gate material, the desired threshold voltage was achieved for the ultrathin body device The quasiplanar nature of this new variant of the vertical double-gate MOSFETs can be fabricated relatively easily using the conventional planar MOSFET process technologies

1,536 citations

••

[...]

TL;DR: In this paper, the inversion layer mobility in n-and p-channel Si MOSFETs with a wide range of substrate impurity concentrations (10/sup 15/ to 10/sup 18/ cm/sup -3/) was examined.

Abstract: This paper reports the studies of the inversion layer mobility in n- and p-channel Si MOSFET's with a wide range of substrate impurity concentrations (10/sup 15/ to 10/sup 18/ cm/sup -3/). The validity and limitations of the universal relationship between the inversion layer mobility and the effective normal field (E/sub eff/) are examined. It is found that the universality of both the electron and hole mobilities does hold up to 10/sup 18/ cm/sup -3/. The E/sub eff/ dependences of the universal curves are observed to differ between electrons and holes, particularly at lower temperatures. This result means a different influence of surface roughness scattering on the electron and hole transports. On substrates with higher impurity concentrations, the electron and hole mobilities significantly deviate from the universal curves at lower surface carrier concentrations because of Coulomb scattering by the substrate impurity. Also, the deviation caused by the charged centers at the Si/SiO/sub 2/ interface is observed in the mobility of MOSFET's degraded by Fowler-Nordheim electron injection. >

1,319 citations

••

[...]

TL;DR: In this article, a miniature gas analysis system based on the principles of gas chromatography (GC) has been built in silicon using photolithography and chemical etching techniques, which allows size reductions of nearly three orders of magnitude compared to conventional laboratory instruments.

Abstract: A miniature gas analysis system has been built based on the principles of gas chromatography (GC). The major components are fabricated in silicon using photolithography and chemical etching techniques, which allows size reductions of nearly three orders of magnitude compared to conventional laboratory instruments. The chromatography system consists of a sample injection valve and a 1.5-m-long separating capillary column, which are fabricated on a substrate silicon wafer. The output thermal conductivity detector is separately batch fabricated and integrably mounted on the substrate wafer. The theory of gas chromatography has been used to optimize the performance of the sensor so that separations of gaseous hydrocarbon mixtures are performed in less than 10 s. The system is expected to find application in the areas of portable ambient air quality monitors, implanted biological experiments, and planetary probes.

1,318 citations

••

[...]

TL;DR: In this article, the spectral density of the noise generated in a uniformly multiplying p-n junction can be derived for any distribution of injected carriers, and the analysis is limited to the white noise spectrum only, and to diodes having large potential drops across the multiplying region of the depletion layer.

Abstract: A general expression is derived from which the spectral density of the noise generated in a uniformly multiplying p-n junction can be calculated for any distribution of injected carriers. The analysis is limited to the white noise part of the noise spectrum only, and to diodes having large potential drops across the multiplying region of the depletion layer. It is shown for the special case in which \beta = k\alpha , where k is a constant and α and β are the ionization coefficients of electrons and holes, respectively, that the noise spectral density is given by 2eI_{in}M^{3}[1 + (\frac{1 - k}{k})(\frac{M - 1}{M})^{2}] where M is the current multiplication factor and I in the injected current, if the only carriers injected into the depletion layer are holes, and by 2eI_{in}M^{3}[1 - (1 - k)(\frac{M - 1}{M})^{2}] if the only injected carriers are electrons. An expression is also derived for the noise power which will be delivered to an external load for the limit M \rightarrow \infin .

1,243 citations