scispace - formally typeset
Journal

IEEE Transactions on Image Processing 

About: IEEE Transactions on Image Processing is an academic journal. The journal publishes majorly in the area(s): Image processing & Image segmentation. Over the lifetime, 8663 publication(s) have been published receiving 734843 citation(s).

...read more

Papers
More filters

Journal ArticleDOI
Abstract: Objective methods for assessing perceptual image quality traditionally attempted to quantify the visibility of errors (differences) between a distorted image and a reference image using a variety of known properties of the human visual system. Under the assumption that human visual perception is highly adapted for extracting structural information from a scene, we introduce an alternative complementary framework for quality assessment based on the degradation of structural information. As a specific example of this concept, we develop a structural similarity index and demonstrate its promise through a set of intuitive examples, as well as comparison to both subjective ratings and state-of-the-art objective methods on a database of images compressed with JPEG and JPEG2000. A MATLAB implementation of the proposed algorithm is available online at http://www.cns.nyu.edu//spl sim/lcv/ssim/.

...read more

30,333 citations


Journal ArticleDOI
Tony F. Chan1, Luminita A. Vese1Institutions (1)
TL;DR: A new model for active contours to detect objects in a given image, based on techniques of curve evolution, Mumford-Shah (1989) functional for segmentation and level sets is proposed, which can detect objects whose boundaries are not necessarily defined by the gradient.

...read more

Abstract: We propose a new model for active contours to detect objects in a given image, based on techniques of curve evolution, Mumford-Shah (1989) functional for segmentation and level sets. Our model can detect objects whose boundaries are not necessarily defined by the gradient. We minimize an energy which can be seen as a particular case of the minimal partition problem. In the level set formulation, the problem becomes a "mean-curvature flow"-like evolving the active contour, which will stop on the desired boundary. However, the stopping term does not depend on the gradient of the image, as in the classical active contour models, but is instead related to a particular segmentation of the image. We give a numerical algorithm using finite differences. Finally, we present various experimental results and in particular some examples for which the classical snakes methods based on the gradient are not applicable. Also, the initial curve can be anywhere in the image, and interior contours are automatically detected.

...read more

9,743 citations


12


Journal ArticleDOI
TL;DR: An algorithm based on an enhanced sparse representation in transform domain based on a specially developed collaborative Wiener filtering achieves state-of-the-art denoising performance in terms of both peak signal-to-noise ratio and subjective visual quality.

...read more

Abstract: We propose a novel image denoising strategy based on an enhanced sparse representation in transform domain. The enhancement of the sparsity is achieved by grouping similar 2D image fragments (e.g., blocks) into 3D data arrays which we call "groups." Collaborative Altering is a special procedure developed to deal with these 3D groups. We realize it using the three successive steps: 3D transformation of a group, shrinkage of the transform spectrum, and inverse 3D transformation. The result is a 3D estimate that consists of the jointly filtered grouped image blocks. By attenuating the noise, the collaborative filtering reveals even the finest details shared by grouped blocks and, at the same time, it preserves the essential unique features of each individual block. The filtered blocks are then returned to their original positions. Because these blocks are overlapping, for each pixel, we obtain many different estimates which need to be combined. Aggregation is a particular averaging procedure which is exploited to take advantage of this redundancy. A significant improvement is obtained by a specially developed collaborative Wiener filtering. An algorithm based on this novel denoising strategy and its efficient implementation are presented in full detail; an extension to color-image denoising is also developed. The experimental results demonstrate that this computationally scalable algorithm achieves state-of-the-art denoising performance in terms of both peak signal-to-noise ratio and subjective visual quality.

...read more

6,288 citations


Journal ArticleDOI
TL;DR: It is argued that insertion of a watermark under this regime makes the watermark robust to signal processing operations and common geometric transformations provided that the original image is available and that it can be successfully registered against the transformed watermarked image.

...read more

Abstract: This paper presents a secure (tamper-resistant) algorithm for watermarking images, and a methodology for digital watermarking that may be generalized to audio, video, and multimedia data. We advocate that a watermark should be constructed as an independent and identically distributed (i.i.d.) Gaussian random vector that is imperceptibly inserted in a spread-spectrum-like fashion into the perceptually most significant spectral components of the data. We argue that insertion of a watermark under this regime makes the watermark robust to signal processing operations (such as lossy compression, filtering, digital-analog and analog-digital conversion, requantization, etc.), and common geometric transformations (such as cropping, scaling, translation, and rotation) provided that the original image is available and that it can be successfully registered against the transformed watermarked image. In these cases, the watermark detector unambiguously identifies the owner. Further, the use of Gaussian noise, ensures strong resilience to multiple-document, or collusional, attacks. Experimental results are provided to support these claims, along with an exposition of pending open problems.

...read more

6,058 citations


Journal ArticleDOI
Michael Elad1, Michal Aharon1Institutions (1)
TL;DR: This work addresses the image denoising problem, where zero-mean white and homogeneous Gaussian additive noise is to be removed from a given image, and uses the K-SVD algorithm to obtain a dictionary that describes the image content effectively.

...read more

Abstract: We address the image denoising problem, where zero-mean white and homogeneous Gaussian additive noise is to be removed from a given image. The approach taken is based on sparse and redundant representations over trained dictionaries. Using the K-SVD algorithm, we obtain a dictionary that describes the image content effectively. Two training options are considered: using the corrupted image itself, or training on a corpus of high-quality image database. Since the K-SVD is limited in handling small image patches, we extend its deployment to arbitrary image sizes by defining a global image prior that forces sparsity over patches in every location in the image. We show how such Bayesian treatment leads to a simple and effective denoising algorithm. This leads to a state-of-the-art denoising performance, equivalent and sometimes surpassing recently published leading alternative denoising methods

...read more

5,015 citations


Network Information
Related Journals (5)
IEEE Transactions on Circuits and Systems for Video Technology

4.9K papers, 273.2K citations

94% related
Journal of Visual Communication and Image Representation

2.9K papers, 62K citations

93% related
Signal Processing-image Communication

2.5K papers, 58.4K citations

92% related
arXiv: Computer Vision and Pattern Recognition

50K papers, 1.1M citations

91% related
Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
20222
2021702
2020723
2019462
2018451
2017457

Top Attributes

Show by:

Journal's top 5 most impactful authors

Dacheng Tao

136 papers, 12.7K citations

Alan C. Bovik

85 papers, 46.3K citations

Michael Unser

59 papers, 11.8K citations

Xuelong Li

58 papers, 4.4K citations

Aggelos K. Katsaggelos

46 papers, 4.1K citations