scispace - formally typeset
Search or ask a question

Showing papers in "IEEE Transactions on Industrial Electronics in 2008"


Journal ArticleDOI
TL;DR: An attempt is made to provide a brief review of the current state of the art in the area of variable-speed drives, addressing the reasons for potential use of multiphase rather than three-phase drives and the available approaches to multiphases machine designs.
Abstract: Although the concept of variable-speed drives, based on utilization of multiphase machines, dates back to the late 1960s, it was not until the mid- to late 1990s that multiphase drives became serious contenders for various applications. These include electric ship propulsion, locomotive traction, electric and hybrid electric vehicles, ldquomore-electricrdquo aircraft, and high-power industrial applications. As a consequence, there has been a substantial increase in the interest for such drive systems worldwide, resulting in a huge volume of work published during the last ten years. An attempt is made in this paper to provide a brief review of the current state of the art in the area. After addressing the reasons for potential use of multiphase rather than three-phase drives and the available approaches to multiphase machine designs, various control schemes are surveyed. This is followed by a discussion of the multiphase voltage source inverter control. Various possibilities for the use of additional degrees of freedom that exist in multiphase machines are further elaborated. Finally, multiphase machine applications in electric energy generation are addressed.

1,683 citations


Journal ArticleDOI
TL;DR: A simple classification of the most important types of predictive control is introduced, and each one of them is explained including some application examples.
Abstract: Predictive control is a very wide class of controllers that have found rather recent application in the control of power converters. Research on this topic has been increased in the last years due to the possibilities of today's microprocessors used for the control. This paper presents the application of different predictive control methods to power electronics and drives. A simple classification of the most important types of predictive control is introduced, and each one of them is explained including some application examples. Predictive control presents several advantages that make it suitable for the control of power converters and drives. The different control schemes and applications presented in this paper illustrate the effectiveness and flexibility of predictive control.

1,389 citations


Journal ArticleDOI
TL;DR: An overview of permanent-magnet (PM) brushless (BL) drives for EVs and HEVs is presented, with emphasis on machine topologies, drive operations, and control strategies.
Abstract: With ever-increasing concerns on our environment, there is a fast growing interest in electric vehicles (EVs) and hybrid EVs (HEVs) from automakers, governments, and customers. As electric drives are the core of both EVs and HEVs, it is a pressing need for researchers to develop advanced electric-drive systems. In this paper, an overview of permanent-magnet (PM) brushless (BL) drives for EVs and HEVs is presented, with emphasis on machine topologies, drive operations, and control strategies. Then, three major research directions of the PM BL drive systems are elaborated, namely, the magnetic-geared outer-rotor PM BL drive system, the PM BL integrated starter-generator system, and the PM BL electric variable-transmission system.

1,281 citations


Journal ArticleDOI
TL;DR: A modified variable step size INC MPPT algorithm is proposed, which automatically adjusts the step size to track the PV array maximum power point and can effectively improve the MPPT speed and accuracy simultaneously.
Abstract: Maximum power point tracking (MPPT) techniques are employed in photovoltaic (PV) systems to make full utilization of PV array output power which depends on solar irradiation and ambient temperature. Among all the MPPT strategies, the incremental conductance (INC) algorithm is widely used due to the high tracking accuracy at steady state and good adaptability to the rapidly changing atmospheric conditions. In this paper, a modified variable step size INC MPPT algorithm is proposed, which automatically adjusts the step size to track the PV array maximum power point. Compared with the conventional fixed step size method, the proposed approach can effectively improve the MPPT speed and accuracy simultaneously. Furthermore, it is simple and can be easily implemented in digital signal processors. A theoretical analysis and the design principle of the proposed method are provided and its feasibility is also verified by simulation and experimental results.

1,235 citations


Journal ArticleDOI
TL;DR: A brief review of the current trends and future vehicle strategies and the function of power electronic subsystems are described and the requirements of power electronics components and electric motor drives for the successful development of these vehicles are presented.
Abstract: With the requirements for reducing emissions and improving fuel economy, automotive companies are developing electric, hybrid electric, and plug-in hybrid electric vehicles. Power electronics is an enabling technology for the development of these environmentally friendlier vehicles and implementing the advanced electrical architectures to meet the demands for increased electric loads. In this paper, a brief review of the current trends and future vehicle strategies and the function of power electronic subsystems are described. The requirements of power electronic components and electric motor drives for the successful development of these vehicles are also presented.

1,222 citations


Journal ArticleDOI
TL;DR: This paper investigates diagnostic techniques for electrical machines with special reference to induction machines and to papers published in the last ten years, and research activities are classified into four main topics.
Abstract: This paper investigates diagnostic techniques for electrical machines with special reference to induction machines and to papers published in the last ten years. A comprehensive list of references is reported and examined, and research activities classified into four main topics: 1) electrical faults; 2) mechanical faults; 3) signal processing for analysis and monitoring; and 4) artificial intelligence and decision-making techniques.

1,003 citations


Journal ArticleDOI
TL;DR: This paper reviews state-of-the-art ESSs in automotive applications and hybrid power sources are considered as a method of combining two or more energy storage devices to create a superior power source.
Abstract: The fuel efficiency and performance of novel vehicles with electric propulsion capability are largely limited by the performance of the energy storage system (ESS). This paper reviews state-of-the-art ESSs in automotive applications. Battery technology options are considered in detail, with emphasis on methods of battery monitoring, managing, protecting, and balancing. Furthermore, other ESS candidates such as ultracapacitors, flywheels and fuel cells are also discussed. Finally, hybrid power sources are considered as a method of combining two or more energy storage devices to create a superior power source.

982 citations


Journal ArticleDOI
TL;DR: A novel algorithm to track the global power peak under partially shaded conditions and a feedforward control scheme for operating the DC-DC converter is proposed, which uses the reference voltage information from the tracking algorithm to shift the operation toward the MPP.
Abstract: Current-voltage and power-voltage characteristics of large photovoltaic (PV) arrays under partially shaded conditions are characterized by multiple steps and peaks. This makes the tracking of the actual maximum power point (MPP) [global peak (GP)] a difficult task. In addition, most of the existing schemes are unable to extract maximum power from the PV array under these conditions. This paper proposes a novel algorithm to track the global power peak under partially shaded conditions. The formulation of the algorithm is based on several critical observations made out of an extensive study of the PV characteristics and the behavior of the global and local peaks under partially shaded conditions. The proposed algorithm works in conjunction with a DC-DC converter to track the GP. In order to accelerate the tracking speed, a feedforward control scheme for operating the DC-DC converter is also proposed, which uses the reference voltage information from the tracking algorithm to shift the operation toward the MPP. The tracking time with this controller is about one-tenth as compared to a conventional controller. All the observations and conclusions, including simulation and experimental results, are presented.

978 citations


Journal ArticleDOI
TL;DR: The most important control schemes for the parallel operation of UPS systems, including active load-sharing techniques and droop control approaches, are depicted.
Abstract: In the last years, the use of distributed uninterruptible power supply (UPS) systems has been growing into the market, becoming an alternative to large conventional UPS systems. In addition, with the increasing interest in renewable energy integration and distributed generation, distributed UPS systems can be a suitable solution for storage energy in micro grids. This paper depicts the most important control schemes for the parallel operation of UPS systems. Active load-sharing techniques and droop control approaches are described. The recent improvements and variants of these control techniques are presented.

666 citations


Journal ArticleDOI
TL;DR: This paper attempts to present the first survey on fabric defect detection techniques presented in about 160 references, and suggests that the combination of statistical, spectral and model-based approaches can give better results than any single approach.
Abstract: The investment in an automated fabric defect detection system is more than economical when reduction in labor cost and associated benefits are considered. The development of a fully automated web inspection system requires robust and efficient fabric defect detection algorithms. The inspection of real fabric defects is particularly challenging due to the large number of fabric defect classes, which are characterized by their vagueness and ambiguity. Numerous techniques have been developed to detect fabric defects and the purpose of this paper is to categorize and/or describe these algorithms. This paper attempts to present the first survey on fabric defect detection techniques presented in about 160 references. Categorization of fabric defect detection techniques is useful in evaluating the qualities of identified features. The characterization of real fabric surfaces using their structure and primitive set has not yet been successful. Therefore, on the basis of the nature of features from the fabric surfaces, the proposed approaches have been characterized into three categories; statistical, spectral and model-based. In order to evaluate the state-of-the-art, the limitations of several promising techniques are identified and performances are analyzed in the context of their demonstrated results and intended application. The conclusions from this paper also suggest that the combination of statistical, spectral and model-based approaches can give better results than any single approach, and is suggested for further research.

628 citations


Journal ArticleDOI
TL;DR: It is shown that versatile stand-alone photovoltaic (PV) systems still demand on at least one battery inverter with improved characteristics of robustness and efficiency, which can be achieved using multilevel topologies.
Abstract: This paper shows that versatile stand-alone photovoltaic (PV) systems still demand on at least one battery inverter with improved characteristics of robustness and efficiency, which can be achieved using multilevel topologies. A compilation of the most common topologies of multilevel converters is presented, and it shows which ones are best suitable to implement inverters for stand-alone applications in the range of a few kilowatts. As an example, a prototype of 3 kVA was implemented, and peak efficiency of 96.0% was achieved.

Journal ArticleDOI
TL;DR: A new high-efficiency topology for transformerless systems is proposed, which does not generate common-mode currents and topologically guarantees that no dc is injected into the grid and has been verified in a 5-kW prototype with satisfactory results.
Abstract: The elimination of the output transformer from grid- connected photovoltaic (PV) systems not only reduces the cost, size, and weight of the conversion stage but also increases the system overall efficiency. However, if the transformer is removed, the galvanic isolation between the PV generator and the grid is lost. This may cause safety hazards in the event of ground faults. In addition, the circulation of leakage currents (common-mode currents) through the stray capacitance between the PV array and the ground would be enabled. Furthermore, when no transformer is used, the inverter could inject direct current (dc) to the grid, causing the saturation of the transformers along the distribution network. While safety requirements in transformerless systems can be met by means of external elements, leakage currents and the injection of dc into the grid must be guaranteed topologically or by the inverter's control system. This paper proposes a new high-efficiency topology for transformerless systems, which does not generate common-mode currents and topologically guarantees that no dc is injected into the grid. The proposed topology has been verified in a 5-kW prototype with satisfactory results.

Journal ArticleDOI
TL;DR: The goal of this paper is to provide an overview of the open problems related to PV power processing systems and to focus the attention of researchers and industries on present and future challenges in this field.
Abstract: Power processing systems will be a key factor of future photovoltaic (PV) applications. They will play a central role in transferring, to the load and/or to the grid, the electric power produced by the high-efficiency PV cells of the next generation. In order to come up the expectations related to the use of solar energy for producing electrical energy, such systems must ensure high efficiency, modularity, and, particularly, high reliability. The goal of this paper is to provide an overview of the open problems related to PV power processing systems and to focus the attention of researchers and industries on present and future challenges in this field.

Journal ArticleDOI
TL;DR: A dc and small-signal ac model is derived to analyze steady-state behavior, as well as dynamics and stability, of the whole system, and simulation results are reported and discussed.
Abstract: One of the major drawbacks of photovoltaic (PV) systems is represented by the effect of module mismatching and of partial shading of the PV field. Distributed maximum power point tracking (DMPPT) is a very promising technique that allows the increase of efficiency and reliability of such systems. Modeling and designing a PV system with DMPPT is remarkably more complex than implementing a standard MPPT technique. In this paper, a DMPPT system for PV arrays is proposed and analyzed. A dc and small-signal ac model is derived to analyze steady-state behavior, as well as dynamics and stability, of the whole system. Finally, simulation results are reported and discussed.

Journal ArticleDOI
TL;DR: It has been shown that the use of SM control can lead to an improved robustness in providing consistent transient responses over a wide range of operating conditions and is compared with that of conventional linear control in terms of transient characteristics.
Abstract: This paper examines the practical design issues of sliding-mode (SM) controllers as applied to the control of dc-dc converters. A comprehensive review of the relevant literature is first provided. Major problems that prevent the use of SM control in dc-dc converters for industrial and commercial applications are investigated. Possible solutions are derived, and practical design procedures are outlined. The performance of SM control is compared with that of conventional linear control in terms of transient characteristics. It has been shown that the use of SM control can lead to an improved robustness in providing consistent transient responses over a wide range of operating conditions.

Journal ArticleDOI
TL;DR: A new method for motor fault detection is proposed, which analyzes the spectrogram based on a short-time Fourier transform and a further combination of wavelet and power-spectral-density techniques, which consume a smaller amount of processing power.
Abstract: Motor-current-signature analysis has been successfully used in induction machines for fault diagnosis. The method, however, does not always achieve good results when the speed or the load torque is not constant, because this causes variations on the motor-slip and fast Fourier transform problems appear due to a nonstationary signal. This paper proposes a new method for motor fault detection, which analyzes the spectrogram based on a short-time Fourier transform and a further combination of wavelet and power-spectral-density (PSD) techniques, which consume a smaller amount of processing power. The proposed algorithms have been applied to detect broken rotor bars as well as shorted turns. Besides, a merit factor based on PSD is introduced as a novel approach for condition monitoring, and a further implementation of the algorithm is proposed. Theoretical development and experimental results are provided to support the research.

Journal ArticleDOI
TL;DR: Double-tiered capacitive charge shuttling technique is introduced and applied to a battery system in order to balance the battery-cell voltages and MATLAB simulation shows a substantial improvement in charge transport using the new topology.
Abstract: The automobile industry is progressing toward hybrid, plug-in hybrid, and fully electric vehicles in their future car models. The energy storage unit is one of the most important blocks in the power train of future electric-drive vehicles. Batteries and/or ultracapacitors are the most prominent storage systems utilized so far. Hence, their reliability during the lifetime of the vehicle is of great importance. Charge equalization of series-connected batteries or ultracapacitors is essential due to the capacity imbalances stemming from manufacturing, ensuing driving environment, and operational usage. Double-tiered capacitive charge shuttling technique is introduced and applied to a battery system in order to balance the battery-cell voltages. Parameters in the system are varied, and their effects on the performance of the system are determined. Results are compared to a single-tiered approach. MATLAB simulation shows a substantial improvement in charge transport using the new topology. Experimental results verifying simulation are presented.

Journal ArticleDOI
TL;DR: New models for the influence of rolling-element bearing faults on induction motor stator current are described, based on two effects of a bearing fault: the introduction of a particular radial rotor movement and load torque variations caused by the bearing fault.
Abstract: This paper describes a new analytical model for the influence of rolling-element bearing faults on induction motor stator current. Bearing problems are one major cause for drive failures. Their detection is possible by vibration monitoring of characteristic bearing frequencies. As it is possible to detect other machine faults by monitoring the stator current, a great interest exists in applying the same method for bearing fault detection. After a presentation of the existing fault model, a new detailed approach is proposed. It is based on the following two effects of a bearing fault: 1. the introduction of a particular radial rotor movement and 2. load torque variations caused by the bearing fault. The theoretical study results in new expressions for the stator current frequency content. Experimental tests with artificial and realistic bearing damage were conducted by measuring vibration, torque, and stator current. The obtained results by spectral analysis of the measured quantities validate the proposed theoretical approach.

Journal ArticleDOI
TL;DR: An adaptive total sliding-mode control system is designed for the voltage control of the PWM inverter to maintain a sinusoidal output voltage with lower total harmonic distortion and less variation under various output loads.
Abstract: This study develops a high-performance stand-alone photovoltaic (PV) generation system. To make the PV generation system more flexible and expandable, the backstage power circuit is composed of a high step-up converter and a pulsewidth-modulation (PWM) inverter. In the dc-dc power conversion, the high step-up converter is introduced to improve the conversion efficiency in conventional boost converters to allow the parallel operation of low-voltage PV arrays, and to decouple and simplify the control design of the PWM inverter. Moreover, an adaptive total sliding-mode control system is designed for the voltage control of the PWM inverter to maintain a sinusoidal output voltage with lower total harmonic distortion and less variation under various output loads. In addition, an active sun tracking scheme without any light sensors is investigated to make the PV modules face the sun directly for capturing the maximum irradiation and promoting system efficiency. Experimental results are given to verify the validity and reliability of the high step-up converter, the PWM inverter control, and the active sun tracker for the high-performance stand-alone PV generation system.

Journal ArticleDOI
Seul-Ki Kim, Jin-Hong Jeon, Changhee Cho, Jong-Bo Ahn, Sae-Hyuk Kwon1 
TL;DR: This paper presents power-control strategies of a grid-connected hybrid generation system with versatile power transfer, the combination of photovoltaic array, wind turbine, and battery storage via a common dc bus, and its control system.
Abstract: This paper presents power-control strategies of a grid-connected hybrid generation system with versatile power transfer. The hybrid system is the combination of photovoltaic (PV) array, wind turbine, and battery storage via a common dc bus. Versatile power transfer was defined as multimodes of operation, including normal operation without use of battery, power dispatching, and power averaging, which enables grid- or user-friendly operation. A supervisory control regulates power generation of the individual components so as to enable the hybrid system to operate in the proposed modes of operation. The concept and principle of the hybrid system and its control were described. A simple technique using a low-pass filter was introduced for power averaging. A modified hysteresis-control strategy was applied in the battery converter. Modeling and simulations were based on an electromagnetic-transient-analysis program. A 30-kW hybrid inverter and its control system were developed. The simulation and experimental results were presented to evaluate the dynamic performance of the hybrid system under the proposed modes of operation.

Journal ArticleDOI
TL;DR: The developed models proved to accurately represent the PLLs under real test conditions and are presented, providing a refined method for performance evaluation and comparison.
Abstract: In this paper, the performance assessment of three software single-phase phase-locked loop (PLL) algorithms is carried out by means of dynamic analysis and experimental results. Several line disturbances such as phase-angle jump, voltage sag, frequency step, and harmonics are generated by a DSP together with a D/A converter and applied to each PLL. The actual minus the estimated phase-angle values are displayed, providing a refined method for performance evaluation and comparison. Guidelines for parameters adjustments are also presented. In addition, practical implementation issues such as computational delay effects, ride-through, and computational load are addressed. The developed models proved to accurately represent the PLLs under real test conditions.

Journal ArticleDOI
TL;DR: The simulations and experimental results show that the proposed dP-P&O MPPT provides a quick and accurate tracking even in very fast changing environmental conditions.
Abstract: This paper presents a high-performance maximum power point tracker (MPPT) optimized for fast cloudy conditions, e.g., rapidly changing irradiation on the photovoltaic panels. The rapidly changing conditions are tracked by an optimized hill-climbing MPPT method called dP-P&O. This algorithm separates the effects of the irradiation change from the effect of the tracker's perturbation and uses this information to optimize the tracking according to the irradiation change. The knowledge of the direction of the irradiation change enables the MPPT to use different optimized tracking schemes for the different cases of increasing, decreasing, or steady irradiance. When the irradiance is changing rapidly this strategy leads to faster and better tracking, while in steady-state conditions it leads to lower oscillations around the MPP. The simulations and experimental results show that the proposed dP-P&O MPPT provides a quick and accurate tracking even in very fast changing environmental conditions.

Journal ArticleDOI
TL;DR: An in-depth literature review of testing and monitoring methods that diagnose the condition of the turn-to-turn insulation of low-voltage machines, which is a rapidly expanding area for both research and product development efforts.
Abstract: A breakdown of the electrical insulation system causes catastrophic failure of the electrical machine and brings large process downtime losses. To determine the conditions of the stator insulation system of motor drive systems, various testing and monitoring methods have been developed. This paper presents an in-depth literature review of testing and monitoring methods, categorizing them into online and offline methods, each of which is further grouped into specific areas according to their physical nature. The main focus of this paper is on testing and monitoring techniques that diagnose the condition of the turn-to-turn insulation of low-voltage machines, which is a rapidly expanding area for both research and product development efforts. In order to give a compact overview, the results are summarized in two tables. In addition to monitoring methods on turn-to-turn insulation, some of the most common methods to assess the stator's phase-to-ground and phase-to-phase insulation conditions are included in the tables as well.

Journal ArticleDOI
TL;DR: This paper provides guidelines for choosing suitable thermal and flow network formulations and setting any calibration parameters used and may be considered a reference paper that brings together useful heat transfer and flow formulations that can be successfully applied to thermal analysis of electrical machines.
Abstract: This paper deals with the formulations used to predict convection cooling and flow in electric machines. Empirical dimensionless analysis formulations are used to calculate convection heat transfer. The particular formulation used is selected to match the geometry of the surface under consideration and the cooling type used. Flow network analysis, which is used to study the ventilation inside the machine, is also presented. In order to focus the discussion using examples, a commercial software package dedicated to motor cooling optimization (Motor-CAD) is considered. This paper provides guidelines for choosing suitable thermal and flow network formulations and setting any calibration parameters used. It may also be considered a reference paper that brings together useful heat transfer and flow formulations that can be successfully applied to thermal analysis of electrical machines.

Journal ArticleDOI
TL;DR: A new method of improving the disturbance-rejection performance of a servo system based on the estimation of an equivalent input disturbance (EID) is presented.
Abstract: This paper presents a new method of improving the disturbance-rejection performance of a servo system based on the estimation of an equivalent input disturbance (EID). First, the concept of EID is defined. Next, the configuration of an improved servo system employing the new disturbance-estimation method is described. Then, a method of designing a control law employing a disturbance estimate is explained. Finally, the speed control of a rotational control system is used to demonstrate the validity of the method, and some design guidelines are presented.

Journal ArticleDOI
TL;DR: It is demonstrated that when PV array- inverters are operating in the master mode in stand-alone applications, they well perform the task of controlling the voltage and frequency of the power system and that PV power generators constitute a valuable energy source.
Abstract: A substantial increase of photovoltaic (PV) power generators installations has taken place in recent years, due to the increasing efficiency of solar cells as well as the improvements of manufacturing technology of solar panels. These generators are both grid-connected and stand-alone applications. We present an overview of the essential research results. The paper concentrates on the operation and modeling of stand-alone power systems with PV power generators. Systems with PV array-inverter assemblies, operating in the slave-and-master modes, are discussed, and the simulation results obtained using a renewable energy power system modular simulator are presented. These results demonstrate that simulation is an essential step in the system development process and that PV power generators constitute a valuable energy source. They have the ability to balance the energy and supply good power quality. It is demonstrated that when PV array- inverters are operating in the master mode in stand-alone applications, they well perform the task of controlling the voltage and frequency of the power system. The mechanism of switching the master function between the diesel generator and the PV array-inverter assembly in a stand-alone power system is also proposed and analyzed. Finally, some experimental results on a practical system are compared to the simulation results and confirm the usefulness of the proposed approach to the development of renewable energy systems with PV power generators.

Journal ArticleDOI
TL;DR: An adaptive reconfiguration scheme to reduce the effect of shadows on solar panels using a switching matrix according to a model-based control algorithm that increases the power output of the solar PV array.
Abstract: This paper proposes an adaptive reconfiguration scheme to reduce the effect of shadows on solar panels. A switching matrix connects a solar adaptive bank to a fixed part of a solar photovoltaic (PV) array, according to a model-based control algorithm that increases the power output of the solar PV array. Control algorithms are implemented in real time. An experimental reconfiguration PV system with a resistive load is presented and is shown to verify the proposed reconfigurations.

Journal ArticleDOI
TL;DR: An improved boost converter with coupled inductors and buck-boost type of active-clamp feature, PWM control and zero-voltage switching in both main and auxiliary switches, and efficiency can be improved significantly.
Abstract: This paper proposes a boost converter with coupled inductors and a buck-boost type of active clamp. In the converter, the active-clamp circuit is used to eliminate the voltage spike that is induced by the trapped energy in the leakage inductor of the coupled inductors. The active switch in the converter can still sustain a proper duty ratio even under high step-up applications, reducing voltage and current stresses significantly. Moreover, since both main and auxiliary switches can be turned on with zero-voltage switching, switching loss can be reduced, and conversion efficiency therefore can be improved significantly. A 200 W prototype of the proposed boost converter was built, from which experiment results have shown that efficiency can reach as high as 92% and surge can be suppressed effectively. It is relatively feasible for low-input-voltage applications, such as fuel cell and battery power conversion.

Journal ArticleDOI
TL;DR: This paper analyzes the design of the passive components and gives a practical and low-cost solution for the minimization of the circulation currents between the inverters, by using common-mode coils.
Abstract: In this paper, an interleaved active-power-filter concept with reduced size of passive components is discussed. The topology is composed of two pulsewidth-modulation interleaved voltage-source inverters connected together on the ac line and sharing the same dc-link capacitor. The advantages of the proposed approach are as follows: 1. significant reduction in the linkage inductors' size by decreasing the line-current ripple due to the interleaving; 2. reduction of the switching stress in the dc-link capacitor, due to the shared connection; and 3. more accurate compensation for high-power applications, because the power sharing allows one to use a higher switching frequency in each inverter. This paper analyzes the design of the passive components and gives a practical and low-cost solution for the minimization of the circulation currents between the inverters, by using common-mode coils. Several simulation results are discussed, and experimental results with a three-phase 10-kVA 400-V unit are obtained to validate the theoretical analysis.

Journal ArticleDOI
TL;DR: A sliding mode control law is presented and experimentally implemented for trajectory tracking of underactuated autonomous surface vessels and guarantees position tracking while the rotational motion remains bounded.
Abstract: A sliding-mode control law is presented and experimentally implemented for trajectory tracking of underactuated autonomous surface vessels. The control law is developed by introducing a first-order sliding surface in terms of surge tracking errors and a second-order surface in terms of lateral motion tracking errors. The resulting sliding-mode control law guarantees position tracking while the rotational motion remains bounded. The experimental vessel is a small boat with two propellers in an indoor pool. The position and orientation of the boat are measured using a camera that detects two infrared diodes attached near the front and back ends of the boat. A computer with a capture card processes the camera image to determine the position, calculates the control forces and their corresponding input voltages, and sends the control signals to wireless receivers on the vessel using a wireless transmitter. Several experiments are performed where the vessel accurately follows straight-line and circular trajectories.