scispace - formally typeset
Search or ask a question

Showing papers in "IEEE Transactions on Industrial Electronics in 2011"


Journal ArticleDOI
TL;DR: The idea of operating an inverter to mimic a synchronous generator (SG) is motivated and developed, and the inverters that are operated in this way are called synchronverters.
Abstract: In this paper, the idea of operating an inverter to mimic a synchronous generator (SG) is motivated and developed. We call the inverters that are operated in this way synchronverters. Using synchronverters, the well-established theory/algorithms used to control SGs can still be used in power systems where a significant proportion of the generating capacity is inverter-based. We describe the dynamics, implementation, and operation of synchronverters. The real and reactive power delivered by synchronverters connected in parallel and operated as generators can be automatically shared using the well-known frequency- and voltage-drooping mechanisms. Synchronverters can be easily operated also in island mode, and hence, they provide an ideal solution for microgrids or smart grids. Both simulation and experimental results are given to verify the idea.

2,115 citations


Journal ArticleDOI
TL;DR: A circuit model is presented along with a derivation of key system concepts, such as frequency splitting, the maximum operating distance (critical coupling), and the behavior of the system as it becomes undercoupled, including the introduction of key figures of merit.
Abstract: Wireless power technology offers the promise of cutting the last cord, allowing users to seamlessly recharge mobile devices as easily as data are transmitted through the air. Initial work on the use of magnetically coupled resonators for this purpose has shown promising results. We present new analysis that yields critical insight into the design of practical systems, including the introduction of key figures of merit that can be used to compare systems with vastly different geometries and operating conditions. A circuit model is presented along with a derivation of key system concepts, such as frequency splitting, the maximum operating distance (critical coupling), and the behavior of the system as it becomes undercoupled. This theoretical model is validated against measured data and shows an excellent average coefficient of determination of 0.9875. An adaptive frequency tuning technique is demonstrated, which compensates for efficiency variations encountered when the transmitter-to-receiver distance and/or orientation are varied. The method demonstrated in this paper allows a fixed-load receiver to be moved to nearly any position and/or orientation within the range of the transmitter and still achieve a near-constant efficiency of over 70% for a range of 0-70 cm.

1,630 citations


Journal ArticleDOI
TL;DR: A general conceptual circuit for high-step-up, low-cost, and high-efficiency dc/dc conversion is proposed to derive the next-generation topologies for the PV grid-connected power system.
Abstract: The photovoltaic (PV) grid-connected power system in the residential applications is becoming a fast growing segment in the PV market due to the shortage of the fossil fuel energy and the great environmental pollution. A new research trend in the residential generation system is to employ the PV parallel-connected configuration rather than the series-connected configuration to satisfy the safety requirements and to make full use of the PV generated power. How to achieve high-step-up, low-cost, and high-efficiency dc/dc conversion is the major consideration due to the low PV output voltage with the parallel-connected structure. The limitations of the conventional boost converters in these applications are analyzed. Then, most of the topologies with high-step-up, low-cost, and high-efficiency performance are covered and classified into several categories. The advantages and disadvantages of these converters are discussed. Furthermore, a general conceptual circuit for high-step-up, low-cost, and high-efficiency dc/dc conversion is proposed to derive the next-generation topologies for the PV grid-connected power system. Finally, the major challenges of high-step-up, low-cost, and high-efficiency dc/dc converters are summarized. This paper would like to make a clear picture on the general law and framework for the next-generation nonisolated high-step-up dc/dc converters.

1,162 citations


Journal ArticleDOI
TL;DR: Simulation and hardware implementation of incremental conductance maximum power point tracking (MPPT) used in solar array power systems with direct control method and results indicate the feasibility and improved functionality of the system.
Abstract: This paper presents simulation and hardware implementation of incremental conductance (IncCond) maximum power point tracking (MPPT) used in solar array power systems with direct control method. The main difference of the proposed system to existing MPPT systems includes elimination of the proportional-integral control loop and investigation of the effect of simplifying the control circuit. Contributions are made in several aspects of the whole system, including converter design, system simulation, controller programming, and experimental setup. The resultant system is capable of tracking MPPs accurately and rapidly without steady-state oscillation, and also, its dynamic performance is satisfactory. The IncCond algorithm is used to track MPPs because it performs precise control under rapidly changing atmospheric conditions. MATLAB and Simulink were employed for simulation studies, and Code Composer Studio v3.1 was used to program a TMS320F2812 digital signal processor. The proposed system was developed and tested successfully on a photovoltaic solar panel in the laboratory. Experimental results indicate the feasibility and improved functionality of the system.

974 citations


Journal ArticleDOI
TL;DR: A new multiresonant frequency-adaptive synchronization method for grid-connected power converters that allows estimating not only the positive- and negative-sequence components of the power signal at the fundamental frequency but also other sequence components at other harmonic frequencies is presented.
Abstract: This paper presents a new multiresonant frequency-adaptive synchronization method for grid-connected power converters that allows estimating not only the positive- and negative-sequence components of the power signal at the fundamental frequency but also other sequence components at other harmonic frequencies. The proposed system is called MSOGI-FLL since it is based on both a harmonic decoupling network consisting of multiple second-order generalized integrators (MSOGIs) and a frequency-locked loop (FLL), which makes the system frequency adaptive. In this paper, the MSOGI-FLL is analyzed for single- and three-phase applications, deducing some key expressions regarding its stability and tuning. Moreover, the performance of the MSOGI-FLL is evaluated by both simulations and experiments to show its capability for detecting different harmonic components in a highly polluted grid scenario.

950 citations


Journal ArticleDOI
TL;DR: A determinist energy management system for a microgrid, including advanced PV generators with embedded storage units and a gas microturbine is proposed, which is implemented in two parts: a central energy management of the microgrid and a local power management at the customer side.
Abstract: The development of energy management tools for next-generation PhotoVoltaic (PV) installations, including storage units, provides flexibility to distribution system operators. In this paper, the aggregation and implementation of these determinist energy management methods for business customers in a microgrid power system are presented. This paper proposes a determinist energy management system for a microgrid, including advanced PV generators with embedded storage units and a gas microturbine. The system is organized according to different functions and is implemented in two parts: a central energy management of the microgrid and a local power management at the customer side. The power planning is designed according to the prediction for PV power production and the load forecasting. The central and local management systems exchange data and order through a communication network. According to received grid power references, additional functions are also designed to manage locally the power flows between the various sources. Application to the case of a hybrid supercapacitor battery-based PV active generator is presented.

905 citations


Journal ArticleDOI
TL;DR: The most-adopted wind-turbine systems, the adopted generators, the topologies of the converters, the generator control and grid connection issues, as well as their arrangement in wind parks are reviewed.
Abstract: Multimegawatt wind-turbine systems, often organized in a wind park, are the backbone of the power generation based on renewable-energy systems. This paper reviews the most-adopted wind-turbine systems, the adopted generators, the topologies of the converters, the generator control and grid connection issues, as well as their arrangement in wind parks.

860 citations


Journal ArticleDOI
Wei Yao1, Min Chen1, Jose Matas, Josep M. Guerrero, Zhaoming Qian1 
TL;DR: It is concluded that the conventional droop method cannot achieve efficient power sharing for the case of a system with complex impedance condition, and a novel droop controller that considers the impact of complex impedance is proposed.
Abstract: This paper investigates the characteristics of the active and reactive power sharing in a parallel inverters system under different system impedance conditions. The analyses conclude that the conventional droop method cannot achieve efficient power sharing for the case of a system with complex impedance condition. To achieve the proper power balance and minimize the circulating current in the different impedance situations, a novel droop controller that considers the impact of complex impedance is proposed in this paper. This controller can simplify the coupled active and reactive power relationships, which are caused by the complex impedance in the parallel system. In addition, a virtual complex impedance loop is included in the proposed controller to minimize the fundamental and harmonic circulating current that flows in the parallel system. Compared to the other methods, the proposed controller can achieve accurate power sharing, offers efficient dynamic performance, and is more adaptive to different line impedance situations. Simulation and experimental results are presented to prove the validity and the improvements achieved by the proposed controller.

779 citations


Journal ArticleDOI
TL;DR: The smart grid model offers the best potential for maximum utilization of RESs to reduce cost and emission from the electricity industry.
Abstract: The electricity and transportation industries are the main sources of greenhouse gas emissions on Earth. Renewable energy, mainly wind and solar, can reduce emission from the electricity industry (mainly from power plants). Likewise, next-generation plug-in vehicles, which include plug-in hybrid electric vehicles (EVs) and EVs with vehicle-to-grid capability, referred to as “gridable vehicles” (GVs) by the authors, can reduce emission from the transportation industry. GVs can be used as loads, energy sources (small portable power plants), and energy storages in a smart grid integrated with renewable energy sources (RESs). Smart grid operation to reduce both cost and emission simultaneously is a very complex task considering smart charging and discharging of GVs in a distributed energy source and load environment. If a large number of GVs is connected to the electric grid randomly, peak load will be very high. The use of traditional thermal power plants will be economically and environmentally expensive to support the electrified transportation. The intelligent scheduling and control of GVs as loads and/or sources have great potential for evolving a sustainable integrated electricity and transportation infrastructure. Cost and emission reductions in a smart grid by maximum utilization of GVs and RESs are presented in this paper. Possible models for GV applications, including the smart grid model, are given, and results are presented. The smart grid model offers the best potential for maximum utilization of RESs to reduce cost and emission from the electricity industry.

762 citations


Journal ArticleDOI
TL;DR: This paper proposes a new topology, based on the H-bridge with a new ac bypass circuit consisting of a diode rectifier and a switch with clamping to the dc midpoint, which achieves high conversion efficiency and low leakage current.
Abstract: There is a strong trend in the photovoltaic inverter technology to use transformerless topologies in order to acquire higher efficiencies combining with very low ground leakage current. In this paper, a new topology, based on the H-bridge with a new ac bypass circuit consisting of a diode rectifier and a switch with clamping to the dc midpoint, is proposed. The topology is simulated and experimentally validated, and a comparison with other existing topologies is performed. High conversion efficiency and low leakage current are demonstrated.

743 citations


Journal ArticleDOI
TL;DR: The impact on the system-level performance, i.e., efficiency, power density, etc., of industrial inverter drives and of dc-dc converter resulting from the new SiC devices is evaluated based on analytical optimization procedures and prototype systems.
Abstract: Switching devices based on wide bandgap materials such as silicon carbide (SiC) offer a significant performance improvement on the switch level (specific on resistance, etc.) compared with Si devices. Well-known examples are SiC diodes employed, for example, in inverter drives with high switching frequencies. In this paper, the impact on the system-level performance, i.e., efficiency, power density, etc., of industrial inverter drives and of dc-dc converter resulting from the new SiC devices is evaluated based on analytical optimization procedures and prototype systems. There, normally on JFETs by SiCED and normally off JFETs by SemiSouth are considered.

Journal ArticleDOI
TL;DR: An overview of the stator-PM machine is presented, with particular emphasis on concepts, operation principles, machine topologies, electromagnetic performance, and control strategies.
Abstract: Permanent magnet (PM) brushless machines having magnets and windings in stator (the so-called stator-PM machines) have attracted more and more attention in the past decade due to its definite advantages of robust structure, high power density, high efficiency, etc. In this paper, an overview of the stator-PM machine is presented, with particular emphasis on concepts, operation principles, machine topologies, electromagnetic performance, and control strategies. Both brushless ac and dc operation modes are described. The key features of the machines, including the merits and drawbacks of the machines, are summarized. Moreover, the latest development of the machines is also discussed.

Journal ArticleDOI
TL;DR: Results indicate that the proposed bidirectional IPT system is an ideal power interface for efficient and contactless integration of multiple hybrid or EVs into typical power networks.
Abstract: Demand for supplying contactless or wireless power for various applications, ranging from low-power biomedical implants to high-power battery charging systems, is on the rise. Inductive power transfer (IPT) is a well recognized technique through which power can be transferred from one system to another with no physical contacts. This paper presents a novel bidirectional IPT system, which is particularly suitable for applications such as plug-in electric vehicles (EVs) and vehicle-to-grid (V2G) systems, where two-way power transfer is advantageous. The proposed IPT system facilitates simultaneous and controlled charging or discharging of multiple EVs through loose magnetic coupling and without any physical connections. A mathematical model is presented to show that both the amount and direction of power flow between EVs or multiple systems can be controlled through either phase or/and magnitude modulation of voltages generated by converters of each system. The validity of the concept is verified by theoretical analysis, simulations, and experimental results of a 1.5-kW prototype bidirectional IPT system with a 4-cm air gap. Results indicate that the proposed system is an ideal power interface for efficient and contactless integration of multiple hybrid or EVs into typical power networks.

Journal ArticleDOI
TL;DR: A novel variable step-size incremental-resistance MPPT algorithm is introduced, which not only has the merits of INC but also automatically adjusts the step size to track the PV array MPP.
Abstract: Maximum power point (MPP) tracking (MPPT) techniques are widely applied in photovoltaic (PV) systems to make PV array generate peak power which depends on solar irradiation. Among all the MPPT strategies, the incremental-conductance (INC) algorithm is widely employed due to easy implementation and high tracking accuracy. In this paper, a novel variable step-size incremental-resistance MPPT algorithm is introduced, which not only has the merits of INC but also automatically adjusts the step size to track the PV array MPP. Compared with the variable step-size INC method, the proposed scheme can greatly improve the MPPT response speed and accuracy at steady state simultaneously. Moreover, it is more suitable for practical operating conditions due to a wider operating range. This paper provides the theoretical analysis and the design principle of the proposed MPPT strategy. Simulation and experimental results verify its feasibility.

Journal ArticleDOI
TL;DR: An intelligent load-shedding algorithm for intentional islanding and an algorithm of synchronization for grid reconnection to implement grid-connected and intentional-islanding operations of distributed power generation are proposed.
Abstract: Intentional islanding describes the condition in which a microgrid or a portion of the power grid, which consists of a load and a distributed generation (DG) system, is isolated from the remainder of the utility system. In this situation, it is important for the microgrid to continue to provide adequate power to the load. Under normal operation, each DG inverter system in the microgrid usually works in constant current control mode in order to provide a preset power to the main grid. When the microgrid is cut off from the main grid, each DG inverter system must detect this islanding situation and must switch to a voltage control mode. In this mode, the microgrid will provide a constant voltage to the local load. This paper describes a control strategy that is used to implement grid-connected and intentional-islanding operations of distributed power generation. This paper proposes an intelligent load-shedding algorithm for intentional islanding and an algorithm of synchronization for grid reconnection.

Journal ArticleDOI
TL;DR: This paper provides a systematic approach to the design of filter-based active damping methods with tuning procedures, performance, robustness, and limitations discussed with theoretical analysis, selected simulation, and experimental results.
Abstract: Pulsewidth modulation (PWM) voltage source converters are becoming a popular interface to the power grid for many applications. Hence, issues related to the reduction of PWM harmonics injection in the power grid are becoming more relevant. The use of high-order filters like LCL filters is a standard solution to provide the proper attenuation of PWM carrier and sideband voltage harmonics. However, those grid filters introduce potentially unstable dynamics that should be properly damped either passively or actively. The second solution suffers from control and system complexity (a high number of sensors and a high-order controller), even if it is more attractive due to the absence of losses in the damping resistors and due to its flexibility. An interesting and straightforward active damping solution consists in plugging in, in cascade to the main controller, a filter that should damp the unstable dynamics. No more sensors are needed, but there are open issues such as preserving the bandwidth, robustness, and limited complexity. This paper provides a systematic approach to the design of filter-based active damping methods. The tuning procedures, performance, robustness, and limitations of the different solutions are discussed with theoretical analysis, selected simulation, and experimental results.

Journal ArticleDOI
TL;DR: The relationship between maximum efficiency air gap is analyzed using equivalent circuits and the Neumann formula and proposed equations for the conditions required to achieve maximum efficiency for a given air gap are proposed.
Abstract: The progress in the field of wireless power transfer in the last few years is remarkable. With recent research, transferring power across large air gaps has been achieved. Both small and large electric equipment have been proposed, e.g., wireless power transfer for small equipment (mobile phones and laptops) and for large equipment (electric vehicles). Furthermore, replacing every cord with wireless power transfer is proposed. The coupled mode theory was proposed in 2006 and proven in 2007. Magnetic and electric resonant couplings allow power to traverse large air gaps with high efficiency. This technology is closely related to electromagnetic induction and has been applied to antennas and resonators used for filters in communication technology. We have studied these phenomena and technologies using equivalent circuits, which is a more familiar format for electrical engineers than the coupled mode theory. In this paper, we analyzed the relationship between maximum efficiency air gap using equivalent circuits and the Neumann formula and proposed equations for the conditions required to achieve maximum efficiency for a given air gap. The results of these equations match well with the results of electromagnetic field analysis and experiments.

Journal ArticleDOI
TL;DR: A sensorless speed control strategy for a permanent-magnet synchronous motor (PMSM) based on a new sliding-mode observer (SMO), which substitutes a sigmoid function for the signum function with a variable boundary layer is proposed.
Abstract: This paper proposes a sensorless speed control strategy for a permanent-magnet synchronous motor (PMSM) based on a new sliding-mode observer (SMO), which substitutes a sigmoid function for the signum function with a variable boundary layer. In order to apply a sensorless PMSM control which is robust against parameter fluctuations and disturbances, a high-speed SMO is proposed, which estimates the rotor position and the angular velocity from the back EMF. In the conventional SMO, a low-pass filter and an additional position compensation of the rotor are used to reduce the chattering problem that is commonly found in the SMO using the signum function. In order to overcome the time delay caused by the low-pass filter, in this research, a sigmoid function is used for the switching function instead of the signum function. Also, the variation in the stator resistance is estimated to improve the steady-state performance of the SMO. The stability of the proposed SMO was verified using the Lyapunov second method to determine the observer gain. The validity of the proposed high-speed PMSM sensorless velocity control has been demonstrated with simulations and real experiments.

Journal ArticleDOI
TL;DR: An improved maximum power point tracking with better performance based on voltage-oriented control (VOC) is proposed to solve a fast-changing irradiation problem andSimulations and experimental results demonstrate that the proposed method provides effective, fast, and perfect tracking.
Abstract: In this paper, an improved maximum power point (MPP) tracking (MPPT) with better performance based on voltage-oriented control (VOC) is proposed to solve a fast-changing irradiation problem. In VOC, a cascaded control structure with an outer dc link voltage control loop and an inner current control loop is used. The currents are controlled in a synchronous orthogonal d,q frame using a decoupled feedback control. The reference current of proportional-integral (PI) d-axis controller is extracted from the dc-side voltage regulator by applying the energy-balancing control. Furthermore, in order to achieve a unity power factor, the q-axis reference is set to zero. The MPPT controller is applied to the reference of the outer loop control dc voltage photovoltaic (PV). Without PV array power measurement, the proposed MPPT identifies the correct direction of the MPP by processing the d-axis current reflecting the power grid side and the signal error of the PI outer loop designed to only represent the change in power due to the changing atmospheric conditions. The robust tracking capability under rapidly increasing and decreasing irradiance is verified experimentally with a PV array emulator. Simulations and experimental results demonstrate that the proposed method provides effective, fast, and perfect tracking.

Journal ArticleDOI
TL;DR: This paper presents first an overview of the well-known voltage and current dc-link converter topologies used to implement a three-phase PWM ac-ac converter system, and a common knowledge basis of the individual converterTopologies is established.
Abstract: This paper presents first an overview of the well-known voltage and current dc-link converter topologies used to implement a three-phase PWM ac-ac converter system. Starting from the voltage source inverter and the current source rectifier, the basics of space vector modulation are summarized. Based on that, the topology of the indirect matrix converter (IMC) and its modulation are gradually developed from a voltage dc-link back-to-back converter by omitting the dc-link capacitor. In the next step, the topology of the conventional (direct) matrix converter (CMC) is introduced, and the relationship between the IMC and the CMCs is discussed in a figurative manner by investigating the switching states. Subsequently, three-phase ac-ac buck-type chopper circuits are considered as a special case of matrix converters (MCs), and a summary of extended MC topologies is provided, including three-level and hybrid MCs. Therewith, a common knowledge basis of the individual converter topologies is established.

Journal ArticleDOI
TL;DR: An experimental study on the ageing of insulated-gate bipolar transistor (IGBT) power modules shows that ageing mechanisms mainly concern wire bonds and emitter metallization, with gradual impact depending on protocol severity.
Abstract: This paper presents an experimental study on the ageing of insulated-gate bipolar transistor (IGBT) power modules. The aim is to identify the effects of power cycling on these devices with high baseplate temperatures (60 °C to 90 °C) and wide temperature swings (60 °C to 100 °C). These values for thermal stresses have been defined according to automotive applications. The test conditions are provided by two types of test benches that will be described in this paper. The changes in electrical and thermal indicators are observed regularly by a monitoring system. At the end of the test (reaching damage criterion or failure), different analyses are performed (acoustic scanning and SEM imaging), and the damage is listed systematically. Nineteen samples of 600-V 200-A IGBT modules were thus aged using five different power-cycling protocols. The final summary of results shows that ageing mechanisms mainly concern wire bonds and emitter metallization, with gradual impact depending on protocol severity.

Journal ArticleDOI
TL;DR: A review of existing techniques available for online stator interturn fault detection and diagnosis (FDD) in electrical machines, with special attention to short-circuit-fault diagnosis in permanent-magnet machines, which are fast replacing traditional machines in a wide variety of applications.
Abstract: Online fault diagnosis plays a crucial role in providing the required fault tolerance to drive systems used in safety-critical applications. Short-circuit faults are among the common faults occurring in electrical machines. This paper presents a review of existing techniques available for online stator interturn fault detection and diagnosis (FDD) in electrical machines. Special attention is given to short-circuit-fault diagnosis in permanent-magnet machines, which are fast replacing traditional machines in a wide variety of applications. Recent techniques that use signals analysis, models, or knowledge-based systems for FDD are reviewed in this paper. Motor current is the most commonly analyzed signal for fault diagnosis. Hence, motor current signature analysis is a topic of elaborate discussion in this paper. Additionally, parametric and finite-element models that were designed to simulate interturn-fault conditions are reviewed.

Journal ArticleDOI
TL;DR: A novel approach is proposed, which allows chattering reduction on control input while keeping high tracking performance of the controller in steady-state regime by designing a nonlinear reaching law by using an exponential function that dynamically adapts to the variations of the controlled system.
Abstract: In this paper, sliding-mode control is applied on multi-input/multi-output (MIMO) nonlinear systems. A novel approach is proposed, which allows chattering reduction on control input while keeping high tracking performance of the controller in steady-state regime. This approach consists of designing a nonlinear reaching law by using an exponential function that dynamically adapts to the variations of the controlled system. Experimental study was focused on a MIMO modular robot arm. Experimental results are presented to show the effectiveness of the proposed approach, regarding particularly the chattering reduction on control input in steady-state regime.

Journal ArticleDOI
TL;DR: A novel peak detection capability has been devised which, in contrast with conventional peak detection, can work robustly under changing wind conditions and performs self-tuning to cope with the nonconstant efficiencies of the generator-converter subsystems.
Abstract: This paper proposes a novel solution to the problems that exist in the conventional hill climb searching (HCS) maximum power point tracking (MPPT) algorithm for the wind energy conversion system. The presented solution not only solves the tracking speed versus control efficiency tradeoff problem of HCS but also makes sure that the changing wind conditions do not lead HCS in the wrong direction. It intelligently adapts the variable step size to keep up with the rapid changes in the wind and seizes the perturbation at the maxima to yield 100% control efficiency. For this purpose, a novel peak detection capability has been devised which, in contrast with conventional peak detection, can work robustly under changing wind conditions. The proposed MPPT performs self-tuning to cope with the nonconstant efficiencies of the generator-converter subsystems-a phenomenon quite rarely discussed in research papers so far. In addition, a smart speed-sensorless scheme has been developed to avoid the use of mechanical sensors. The experimental results confirm that the proposed algorithm is remarkably faster and more efficient than the conventional HCS.

Journal ArticleDOI
TL;DR: A multiple-complex coefficient-filter-based PLL is presented, and its unique feature lies in the accurate and rapid extraction of the positive and negative sequence components from the polluted grid voltage, and the harmonic components can also be estimated precisely.
Abstract: Synchronization with the utility networks is crucial for operating three-phase grid-interfaced converters. A challenge of synchronization is how to fast and precisely extract the fundamental positive and negative sequences under the distorted and unbalanced conditions. Many phase-locked loop (PLL) and synchronization techniques have been presented in the past decades. Most of them make a tradeoff between the accuracy and dynamic response under severe distorted and unbalanced conditions. In this paper, a multiple-complex coefficient-filter-based PLL is presented, and its unique feature lies in the accurate and rapid extraction of the positive and negative sequence components from the polluted grid voltage, and the harmonic components can also be estimated precisely, which has the potential use for selective compensation in active filter applications. Another advantage of the proposed method is its flexibility for simplifying its structure in some specified conditions. Results of continuous-domain simulations in MATLAB and discrete-domain experiments based on a 32-b fixed-point TMS320F2812 DSP are in good agreement, which confirm the effectiveness of the proposed method.

Journal ArticleDOI
TL;DR: A simple equivalent-circuit model is developed for a wireless energy-transfer system via coupled magnetic resonances, and it is seen that the system can transfer power over a midrange of a few meters and that impedance matching is important to achieve high efficiency.
Abstract: A simple equivalent-circuit model is developed for a wireless energy-transfer system via coupled magnetic resonances, and a practical design method is also provided. Node equations for the resonance system are built with the method, expanding on the equations for a transformer, and the optimum distances of the coils in the system are derived analytically for optimum coupling coefficients for high transfer efficiency. In order to calculate the frequency characteristics for a lossy system, the equivalent model is established at an electric-design automation tool. The model parameters of the actual system are extracted, and the modeling results are compared with measurements. Through the developed model, it is seen that the system can transfer power over a midrange of a few meters and that impedance matching is important to achieve high efficiency.

Journal ArticleDOI
TL;DR: This paper proposes a single-phase seven-level inverter for grid-connected photovoltaic systems, with a novel pulsewidth-modulated (PWM) control scheme, which was verified through simulation and implemented in a prototype.
Abstract: This paper proposes a single-phase seven-level inverter for grid-connected photovoltaic systems, with a novel pulsewidth-modulated (PWM) control scheme. Three reference signals that are identical to each other with an offset that is equivalent to the amplitude of the triangular carrier signal were used to generate the PWM signals. The inverter is capable of producing seven levels of output-voltage levels (Vdc, 2Vdc/3, Vdc/3, 0, -Vdc, -2Vdc/3, -Vdc/3) from the dc supply voltage. A digital proportional-integral current-control algorithm was implemented in a TMS320F2812 DSP to keep the current injected into the grid sinusoidal. The proposed system was verified through simulation and implemented in a prototype.

Journal ArticleDOI
TL;DR: A standalone IPS using radio frequency identification (RFID) technology, based on an object carrying an RFID reader module, which reads low-cost passive tags installed next to the object path, using a Kalman filter is proposed.
Abstract: Indoor positioning systems (IPSs) locate objects in closed structures such as office buildings, hospitals, stores, factories, and warehouses, where Global Positioning System devices generally do not work. Most available systems apply wireless concepts, optical tracking, and/or ultrasound. This paper presents a standalone IPS using radio frequency identification (RFID) technology. The concept is based on an object carrying an RFID reader module, which reads low-cost passive tags installed next to the object path. A positioning system using a Kalman filter is proposed. The inputs of the proposed algorithm are the measurements of the backscattered signal power propagated from nearby RFID tags and a tag-path position database. The proposed algorithm first estimates the location of the reader, neglecting tag-reader angle-path loss. Based on the location estimate, an iterative procedure is implemented, targeting the estimation of the tag-reader angle-path loss, where the latter is iteratively compensated from the received signal strength information measurement. Experimental results are presented, illustrating the high performance of the proposed positioning system.

Journal ArticleDOI
TL;DR: This paper presents new step-up dc/dc converter topologies intended for distributed power generation systems and describes the operation principles of the proposed topologies and analyzes the theoretical and experimental results.
Abstract: This paper presents new step-up dc/dc converter topologies intended for distributed power generation systems. The topologies contain a voltage-fed quasi-Z-source inverter with continuous input current on the primary side, a single-phase isolation transformer, and a voltage doubler rectifier (VDR). To increase the power density of the converter, a three-phase auxiliary ac link (a three-phase inverter and a three-phase isolation transformer) and a three-phase VDR are proposed to be implemented. This paper describes the operation principles of the proposed topologies and analyzes the theoretical and experimental results.

Journal ArticleDOI
TL;DR: This paper analyzes the stability problem of the grid-connected voltage-source inverter (VSI) with LC filters, which demonstrates that the possible grid-impedance variations have a significant influence on the system stability when conventional proportional-integrator (PI) controller is used for grid current control.
Abstract: This paper analyzes the stability problem of the grid-connected voltage-source inverter (VSI) with LC filters, which demonstrates that the possible grid-impedance variations have a significant influence on the system stability when conventional proportional-integrator (PI) controller is used for grid current control. As the grid inductive impedance increases, the low-frequency gain and bandwidth of the PI controller have to be decreased to keep the system stable, thus degrading the tracking performance and disturbance rejection capability. To deal with this stability problem, an H∞ controller with explicit robustness in terms of grid-impedance variations is proposed to incorporate the desired tracking performance and the stability margin. By properly selecting the weighting functions, the synthesized H∞ controller exhibits high gains at the vicinity of the line frequency, similar to the traditional proportional-resonant controller; meanwhile, it has enough high-frequency attenuation to keep the control loop stable. An inner inverter-output-current loop with high bandwidth is also designed to get better disturbance rejection capability. The selection of weighting functions, inner inverter-output-current loop design, and system disturbance rejection capability are discussed in detail in this paper. Both simulation and experimental results of the proposed H∞ controller as well as the conventional PI controller are given and compared, which validates the performance of the proposed control scheme.