scispace - formally typeset
Search or ask a question
JournalISSN: 0278-0046

IEEE Transactions on Industrial Electronics 

Institute of Electrical and Electronics Engineers
About: IEEE Transactions on Industrial Electronics is an academic journal published by Institute of Electrical and Electronics Engineers. The journal publishes majorly in the area(s): Control theory & Inverter. It has an ISSN identifier of 0278-0046. Over the lifetime, 14196 publications have been published receiving 1043433 citations. The journal is also known as: Transactions on industrial electronics & Institute of Electrical and Electronics Engineers transactions on industrial electronics.


Papers
More filters
Journal ArticleDOI
TL;DR: The most important topologies like diode-clamped inverter (neutral-point clamped), capacitor-Clamped (flying capacitor), and cascaded multicell with separate DC sources are presented and the circuit topology options are presented.
Abstract: Multilevel inverter technology has emerged recently as a very important alternative in the area of high-power medium-voltage energy control. This paper presents the most important topologies like diode-clamped inverter (neutral-point clamped), capacitor-clamped (flying capacitor), and cascaded multicell with separate DC sources. Emerging topologies like asymmetric hybrid cells and soft-switched multilevel inverters are also discussed. This paper also presents the most relevant control and modulation methods developed for this family of converters: multilevel sinusoidal pulsewidth modulation, multilevel selective harmonic elimination, and space-vector modulation. Special attention is dedicated to the latest and more relevant applications of these converters such as laminators, conveyor belts, and unified power-flow controllers. The need of an active front end at the input side for those inverters supplying regenerative loads is also discussed, and the circuit topology options are also presented. Finally, the peripherally developing areas such as high-voltage high-power devices and optical sensors and other opportunities for future development are addressed.

6,472 citations

Journal ArticleDOI
TL;DR: An overview of the structures for the DPGS based on fuel cell, photovoltaic, and wind turbines is given and the possibility of compensation for low-order harmonics is discussed.
Abstract: Renewable energy sources like wind, sun, and hydro are seen as a reliable alternative to the traditional energy sources such as oil, natural gas, or coal. Distributed power generation systems (DPGSs) based on renewable energy sources experience a large development worldwide, with Germany, Denmark, Japan, and USA as leaders in the development in this field. Due to the increasing number of DPGSs connected to the utility network, new and stricter standards in respect to power quality, safe running, and islanding protection are issued. As a consequence, the control of distributed generation systems should be improved to meet the requirements for grid interconnection. This paper gives an overview of the structures for the DPGS based on fuel cell, photovoltaic, and wind turbines. In addition, control structures of the grid-side converter are presented, and the possibility of compensation for low-order harmonics is also discussed. Moreover, control strategies when running on grid faults are treated. This paper ends up with an overview of synchronization methods and a discussion about their importance in the control

4,655 citations

Journal ArticleDOI
TL;DR: Active disturbance rejection control is proposed, which is motivated by the ever increasing demands from industry that requires the control technology to move beyond PID, and may very well break the hold of classical PID and enter a new era of innovations.
Abstract: Active disturbance rejection control (ADRC) can be summarized as follows: it inherits from proportional-integral-derivative (PID) the quality that makes it such a success: the error driven, rather than model-based, control law; it takes from modern control theory its best offering: the state observer; it embraces the power of nonlinear feedback and puts it to full use; it is a useful digital control technology developed out of an experimental platform rooted in computer simulations ADRC is made possible only when control is taken as an experimental science, instead of a mathematical one It is motivated by the ever increasing demands from industry that requires the control technology to move beyond PID, which has dominated the practice for over 80 years Specifically, there are four areas of weakness in PID that we strive to address: 1) the error computation; 2) noise degradation in the derivative control; 3) oversimplification and the loss of performance in the control law in the form of a linear weighted sum; and 4) complications brought by the integral control Correspondingly, we propose four distinct measures: 1) a simple differential equation as a transient trajectory generator; 2) a noise-tolerant tracking differentiator; 3) the nonlinear control laws; and 4) the concept and method of total disturbance estimation and rejection Together, they form a new set of tools and a new way of control design Times and again in experiments and on factory floors, ADRC proves to be a capable replacement of PID with unmistakable advantage in performance and practicality, providing solutions to pressing engineering problems of today With the new outlook and possibilities that ADRC represents, we further believe that control engineering may very well break the hold of classical PID and enter a new era, an era that brings back the spirit of innovations

4,530 citations

Journal ArticleDOI
TL;DR: New trends in power electronics for the integration of wind and photovoltaic (PV) power generators are presented and a review of the appropriate storage-system technology used for the Integration of intermittent renewable energy sources is introduced.
Abstract: The use of distributed energy resources is increasingly being pursued as a supplement and an alternative to large conventional central power stations. The specification of a power-electronic interface is subject to requirements related not only to the renewable energy source itself but also to its effects on the power-system operation, especially where the intermittent energy source constitutes a significant part of the total system capacity. In this paper, new trends in power electronics for the integration of wind and photovoltaic (PV) power generators are presented. A review of the appropriate storage-system technology used for the integration of intermittent renewable energy sources is also introduced. Discussions about common and future trends in renewable energy systems based on reliability and maturity of each technology are presented

3,799 citations

Journal ArticleDOI
TL;DR: This paper first presents a brief overview of well-established multilevel converters strongly oriented to their current state in industrial applications to then center the discussion on the new converters that have made their way into the industry.
Abstract: Multilevel converters have been under research and development for more than three decades and have found successful industrial application. However, this is still a technology under development, and many new contributions and new commercial topologies have been reported in the last few years. The aim of this paper is to group and review these recent contributions, in order to establish the current state of the art and trends of the technology, to provide readers with a comprehensive and insightful review of where multilevel converter technology stands and is heading. This paper first presents a brief overview of well-established multilevel converters strongly oriented to their current state in industrial applications to then center the discussion on the new converters that have made their way into the industry. In addition, new promising topologies are discussed. Recent advances made in modulation and control of multilevel converters are also addressed. A great part of this paper is devoted to show nontraditional applications powered by multilevel converters and how multilevel converters are becoming an enabling technology in many industrial sectors. Finally, some future trends and challenges in the further development of this technology are discussed to motivate future contributions that address open problems and explore new possibilities.

3,415 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023441
2022263
20211,398
20201,039
2019953
2018966