Journal•ISSN: 1524-9050
IEEE Transactions on Intelligent Transportation Systems
About: IEEE Transactions on Intelligent Transportation Systems is an academic journal. The journal publishes majorly in the area(s): Intelligent transportation system & Traffic flow. It has an ISSN identifier of 1524-9050. Over the lifetime, 4595 publication(s) have been published receiving 193367 citation(s).
Topics: Intelligent transportation system, Traffic flow, Vehicle dynamics, Poison control, Object detection
Papers published on a yearly basis
Papers
More filters
[...]
TL;DR: A novel deep-learning-based traffic flow prediction method is proposed, which considers the spatial and temporal correlations inherently and is applied for the first time that a deep architecture model is applied using autoencoders as building blocks to represent traffic flow features for prediction.
Abstract: Accurate and timely traffic flow information is important for the successful deployment of intelligent transportation systems. Over the last few years, traffic data have been exploding, and we have truly entered the era of big data for transportation. Existing traffic flow prediction methods mainly use shallow traffic prediction models and are still unsatisfying for many real-world applications. This situation inspires us to rethink the traffic flow prediction problem based on deep architecture models with big traffic data. In this paper, a novel deep-learning-based traffic flow prediction method is proposed, which considers the spatial and temporal correlations inherently. A stacked autoencoder model is used to learn generic traffic flow features, and it is trained in a greedy layerwise fashion. To the best of our knowledge, this is the first time that a deep architecture model is applied using autoencoders as building blocks to represent traffic flow features for prediction. Moreover, experiments demonstrate that the proposed method for traffic flow prediction has superior performance.
1,838 citations
[...]
TL;DR: The results show that for most drivers studied, skin conductivity and heart rate metrics are most closely correlated with driver stress level, indicating that physiological signals can provide a metric of driver stress in future cars capable of physiological monitoring.
Abstract: This paper presents methods for collecting and analyzing physiological data during real-world driving tasks to determine a driver's relative stress level. Electrocardiogram, electromyogram, skin conductance, and respiration were recorded continuously while drivers followed a set route through open roads in the greater Boston area. Data from 24 drives of at least 50-min duration were collected for analysis. The data were analyzed in two ways. Analysis I used features from 5-min intervals of data during the rest, highway, and city driving conditions to distinguish three levels of driver stress with an accuracy of over 97% across multiple drivers and driving days. Analysis II compared continuous features, calculated at 1-s intervals throughout the entire drive, with a metric of observable stressors created by independent coders from videotapes. The results show that for most drivers studied, skin conductivity and heart rate metrics are most closely correlated with driver stress level. These findings indicate that physiological signals can provide a metric of driver stress in future cars capable of physiological monitoring. Such a metric could be used to help manage noncritical in-vehicle information systems and could also provide a continuous measure of how different road and traffic conditions affect drivers.
1,491 citations
[...]
TL;DR: The authors study the impacts of CACC for a highway-merging scenario from four to three lanes and show an improvement of traffic-flow stability and a slight increase in Trafficflow efficiency compared with the merging scenario without equipped vehicles.
Abstract: Cooperative adaptive cruise control (CACC) is an extension of ACC. In addition to measuring the distance to a predecessor, a vehicle can also exchange information with a predecessor by wireless communication. This enables a vehicle to follow its predecessor at a closer distance under tighter control. This paper focuses on the impact of CACC on traffic-flow characteristics. It uses the traffic-flow simulation model MIXIC that was specially designed to study the impact of intelligent vehicles on traffic flow. The authors study the impacts of CACC for a highway-merging scenario from four to three lanes. The results show an improvement of traffic-flow stability and a slight increase in traffic-flow efficiency compared with the merging scenario without equipped vehicles
1,112 citations
[...]
TL;DR: A survey of 68 CDR modeling methods, several of which are currently in use or under operational evaluation, and a framework that articulates the basic functions of CDR is used to categorize the models.
Abstract: A number of methods have been proposed to automate air traffic conflict detection and resolution (CDR), but there has been little cohesive discussion or comparative evaluation of approaches. The paper presents a survey of 68 CDR modeling methods, several of which are currently in use or under operational evaluation. A framework that articulates the basic functions of CDR is used to categorize the models. The taxonomy includes: dimensions of state information (vertical, horizontal, or three-dimensional, 3-D); method of dynamic state propagation (nominal, worst case, or probabilistic); conflict detection threshold; conflict resolution method (prescribed, optimized, force field, or manual); maneuvering dimensions (speed change, lateral, vertical, or combined manoeuvres); and management of multiple aircraft conflicts (pairwise or global). An overview of important considerations for these and other CDR functions is provided, and the current system design process is critiqued.
1,043 citations
[...]
TL;DR: A comparison of a wide variety of methods, pointing out the similarities and differences between methods as well as when and where various methods are most useful, is presented.
Abstract: Driver-assistance systems that monitor driver intent, warn drivers of lane departures, or assist in vehicle guidance are all being actively considered. It is therefore important to take a critical look at key aspects of these systems, one of which is lane-position tracking. It is for these driver-assistance objectives that motivate the development of the novel "video-based lane estimation and tracking" (VioLET) system. The system is designed using steerable filters for robust and accurate lane-marking detection. Steerable filters provide an efficient method for detecting circular-reflector markings, solid-line markings, and segmented-line markings under varying lighting and road conditions. They help in providing robustness to complex shadowing, lighting changes from overpasses and tunnels, and road-surface variations. They are efficient for lane-marking extraction because by computing only three separable convolutions, we can extract a wide variety of lane markings. Curvature detection is made more robust by incorporating both visual cues (lane markings and lane texture) and vehicle-state information. The experiment design and evaluation of the VioLET system is shown using multiple quantitative metrics over a wide variety of test conditions on a large test path using a unique instrumented vehicle. A justification for the choice of metrics based on a previous study with human-factors applications as well as extensive ground-truth testing from different times of day, road conditions, weather, and driving scenarios is also presented. In order to design the VioLET system, an up-to-date and comprehensive analysis of the current state of the art in lane-detection research was first performed. In doing so, a comparison of a wide variety of methods, pointing out the similarities and differences between methods as well as when and where various methods are most useful, is presented
1,000 citations