scispace - formally typeset
Search or ask a question

Showing papers in "IEEE Transactions on Medical Imaging in 1997"


Journal Article•DOI•
TL;DR: The results demonstrate that subvoxel accuracy with respect to the stereotactic reference solution can be achieved completely automatically and without any prior segmentation, feature extraction, or other preprocessing steps which makes this method very well suited for clinical applications.
Abstract: A new approach to the problem of multimodality medical image registration is proposed, using a basic concept from information theory, mutual information (MI), or relative entropy, as a new matching criterion. The method presented in this paper applies MI to measure the statistical dependence or information redundancy between the image intensities of corresponding voxels in both images, which is assumed to be maximal if the images are geometrically aligned. Maximization of MI is a very general and powerful criterion, because no assumptions are made regarding the nature of this dependence and no limiting constraints are imposed on the image content of the modalities involved. The accuracy of the MI criterion is validated for rigid body registration of computed tomography (CT), magnetic resonance (MR), and photon emission tomography (PET) images by comparison with the stereotactic registration solution, while robustness is evaluated with respect to implementation issues, such as interpolation and optimization, and image content, including partial overlap and image degradation. Our results demonstrate that subvoxel accuracy with respect to the stereotactic reference solution can be achieved completely automatically and without any prior segmentation, feature extraction, or other preprocessing steps which makes this method very well suited for clinical applications.

4,773 citations


Journal Article•DOI•
TL;DR: This paper presents two new rebinning algorithms for the reconstruction of three-dimensional (3-D) positron emission tomography (PET) data that are approximate but allows an efficient implementation based on taking 2-D Fourier transforms of the data.
Abstract: This paper presents two new rebinning algorithms for the reconstruction of three-dimensional (3-D) positron emission tomography (PET) data. A rebinning algorithm is one that first sorts the 3-D data into an ordinary two-dimensional (2-D) data set containing one sinogram for each transaxial slice to be reconstructed; the 3-D image is then recovered by applying to each slice a 2-D reconstruction method such as filtered-backprojection. This approach allows a significant speedup of 3-D reconstruction, which is particularly useful for applications involving dynamic acquisitions or whole-body imaging. The first new algorithm is obtained by discretizing an exact analytical inversion formula. The second algorithm, called the Fourier rebinning algorithm (FORE), is approximate but allows an efficient implementation based on taking 2-D Fourier transforms of the data. This second algorithm was implemented and applied to data acquired with the new generation of PET systems and also to simulated data for a scanner with an 18/spl deg/ axial aperture. The reconstructed images were compared to those obtained with the 3-D reprojection algorithm (3DRP) which is the standard "exact" 3-D filtered-backprojection method. Results demonstrate that FORE provides a reliable alternative to 3DRP, while at the same time achieving an order of magnitude reduction in processing time.

760 citations



Journal Article•DOI•
TL;DR: This work employs the new geometric active contour models, previously formulated, for edge detection and segmentation of magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound medical imagery, and leads to a novel snake paradigm in which the feature of interest may be considered to lie at the bottom of a potential well.
Abstract: We employ the new geometric active contour models, previously formulated, for edge detection and segmentation of magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound medical imagery. Our method is based on defining feature-based metrics on a given image which in turn leads to a novel snake paradigm in which the feature of interest may be considered to lie at the bottom of a potential well. Thus, the snake is attracted very quickly and efficiently to the desired feature.

676 citations


Journal Article•DOI•
TL;DR: The proposed scheme for segmentation is based on the iterative conditional modes (ICM) algorithm in which measurement model parameters are estimated using local information at each site, and the prior model parametersare estimated using the segmentation after each cycle of iterations.
Abstract: A statistical model is presented that represents the distributions of major tissue classes in single-channel magnetic resonance (MR) cerebral images. Using the model, cerebral images are segmented into gray matter, white matter, and cerebrospinal fluid (CSF). The model accounts for random noise, magnetic field inhomogeneities, and biological variations of the tissues. Intensity measurements are modeled by a finite Gaussian mixture. Smoothness and piecewise contiguous nature of the tissue regions are modeled by a three-dimensional (3-D) Markov random field (MRF). A segmentation algorithm, based on the statistical model, approximately finds the maximum a posteriori (MAP) estimation of the segmentation and estimates the model parameters from the image data. The proposed scheme for segmentation is based on the iterative conditional modes (ICM) algorithm in which measurement model parameters are estimated using local information at each site, and the prior model parameters are estimated using the segmentation after each cycle of iterations. Application of the algorithm to a sample of clinical MR brain scans, comparisons of the algorithm with other statistical methods, and a validation study with a phantom are presented. The algorithm constitutes a significant step toward a complete data driven unsupervised approach to segmentation of MR images in the presence of the random noise and intensity inhomogeneities.

659 citations


Journal Article•DOI•
TL;DR: Findings indicate that this extrinsic-point-based, interactive image-guided neurosurgical system designed at Vanderbilt University is an accurate navigational aid that can provide real-time feedback to the surgeon about anatomical structures encountered in the surgical field.
Abstract: Describes an extrinsic-point-based, interactive image-guided neurosurgical system designed at Vanderbilt University, Nashville, TN, as part of a collaborative effort among the Departments of Neurological Surgery, Computer Science, and Biomedical Engineering. Multimodal image-to-image (II) and image-to-physical (IP) registration is accomplished using implantable markers. Physical space tracking is accomplished with optical triangulation. The authors investigate the theoretical accuracy of point-based registration using numerical simulations, the experimental accuracy of their system using data obtained with a phantom, and the clinical accuracy of their system using data acquired in a prospective clinical trial by 6 neurosurgeons at 4 medical centers from 158 patients undergoing craniotomies to respect cerebral lesions. The authors can determine the position of their markers with an error of approximately 0.4 mm in X-ray computed tomography (CT) and magnetic resonance (MR) images and 0.3 mm in physical space. The theoretical registration error using 4 such markers distributed around the head in a configuration that is clinically practical is approximately 0.5-0.6 mm. The mean CT-physical registration error for the: phantom experiments is 0.5 mm and for the clinical data obtained with rigid head fixation during scanning is 0.7 mm. The mean CT-MR registration error for the clinical data obtained without rigid head fixation during scanning is 1.4 mm, which is the highest mean error that the authors observed. These theoretical and experimental findings indicate that this system is an accurate navigational aid that can provide real-time feedback to the surgeon about anatomical structures encountered in the surgical field.

575 citations


Journal Article•DOI•
TL;DR: A methodology for evaluating medical image segmentation algorithms wherein the only information available is boundaries outlined by multiple expert observers is proposed, and the results of the segmentation algorithm can be evaluated against the multiple observers' outlines.
Abstract: Image segmentation is the partition of an image into a set of nonoverlapping regions whose union is the entire image. The image is decomposed into meaningful parts which are uniform with respect to certain characteristics, such as gray level or texture. In this paper, we propose a methodology for evaluating medical image segmentation algorithms wherein the only information available is boundaries outlined by multiple expert observers. In this case, the results of the segmentation algorithm can be evaluated against the multiple observers' outlines. We have derived statistics to enable us to find whether the computer-generated boundaries agree with the observers' hand-outlined boundaries as much as the different observers agree with each other. We illustrate the use of this methodology by evaluating image segmentation algorithms on two different applications in ultrasound imaging. In the first application, we attempt to find the epicardial and endocardial boundaries from cardiac ultrasound images, and in the second application, our goal is to find the fetal skull and abdomen boundaries from prenatal ultrasound images.

572 citations


Journal Article•DOI•
TL;DR: It is shown that transformations constrained by quadratic regularization methods such as the Laplacian, biharmonic, and linear elasticity models, do not ensure that the transformation maintains topology and, therefore, must only be used for coarse global registration.
Abstract: Presents diffeomorphic transformations of three-dimensional (3-D) anatomical image data of the macaque occipital lobe and whole brain cryosection imagery and of deep brain structures in human brains as imaged via magnetic resonance imagery. These transformations are generated in a hierarchical manner, accommodating both global and local anatomical detail. The initial low-dimensional registration is accomplished by constraining the transformation to be in a low-dimensional basis. The basis is defined by the Green's function of the elasticity operator placed at predefined locations in the anatomy and the eigenfunctions of the elasticity operator. The high-dimensional large deformations are vector fields generated via the mismatch between the template and target-image volumes constrained to be the solution of a Navier-Stokes fluid model. As part of this procedure, the Jacobian of the transformation is tracked, insuring the generation of diffeomorphisms. It is shown that transformations constrained by quadratic regularization methods such as the Laplacian, biharmonic, and linear elasticity models, do not ensure that the transformation maintains topology and, therefore, must only be used for coarse global registration.

543 citations


Journal Article•DOI•
TL;DR: Radial basis functions are fitted to depth-maps of the skull's surface, obtained from X-ray computed tomography (CT) data using ray-tracing techniques, and used to smoothly interpolate the surface of the skulls across defect regions.
Abstract: Radial basis functions are presented as a practical solution to the problem of interpolating incomplete surfaces derived from three-dimensional (3-D) medical graphics. The specific application considered is the design of cranial implants for the repair of defects, usually holes, in the skull. Radial basis functions impose few restrictions on the geometry of the interpolation centers and are suited to problems where the Interpolation centers do not form a regular grid. However, their high computational requirements have previously limited their use to problems where the number of interpolation centers is small (<300). Recently developed fast evaluation techniques have overcome these limitations and made radial basis interpolation a practical approach for larger data sets. In this paper radial basis functions are fitted to depth-maps of the skull's surface, obtained from X-ray computed tomography (CT) data using ray-tracing techniques. They are used to smoothly interpolate the surface of the skull across defect regions. The resulting mathematical description of the skull's surface can be evaluated at any desired resolution to be rendered on a graphics workstation or to generate instructions for operating a computer numerically controlled (CNC) mill.

507 citations


Journal Article•DOI•
TL;DR: In this article, a fully-automatic 3D-segmentation technique for brain magnetic resonance (MR) images is described. And the impact of noise, inhomogeneity, smoothing, and structure thickness are analyzed quantitatively.
Abstract: Describes a fully-automatic three-dimensional (3-D)-segmentation technique for brain magnetic resonance (MR) images. By means of Markov random fields (MRF's) the segmentation algorithm captures three features that are of special importance for MR images, i.e., nonparametric distributions of tissue intensities, neighborhood correlations, and signal inhomogeneities. Detailed simulations and real MR images demonstrate the performance of the segmentation algorithm. In particular, the impact of noise, inhomogeneity, smoothing, and structure thickness are analyzed quantitatively. Even single-echo MR images are well classified into gray matter, white matter, cerebrospinal fluid, scalp-bone, and background. A simulated annealing and an iterated conditional modes implementation are presented.

454 citations


Journal Article•DOI•
TL;DR: The BSI is an accurate and robust measure of regional and global cerebral volume changes and good linear correlation was obtained between the ventricular BSI and the difference in their segmented volumes.
Abstract: We propose the boundary shift integral (BSI) as a measure of cerebral volume changes derived from registered repeat three-dimensional (3-D) magnetic resonance (MR) [3D MR] scans. The BSI determines the total volume through which the boundaries of a given cerebral structure have moved and, hence, the volume change, directly from voxel intensities. We found brain and ventricular BSI's correlated tightly (r=1.000 and r=0.999) with simulated volumes of change. Applied to 21 control scan pairs and 11 scan pairs from Alzheimer's disease (AD) patients (mean interval 386 days) the BSI yielded mean brain volume loss of 1.8 cc (controls) and 34.7 cc (AD); the control group was tightly bunched (SD=3.8 cc) and there was wide group separation, the group means differing by 8.7 control group standard deviations (SDs). A measure based on the same segmentation used by the BSI yielded similar group means, but wide spread in the control group (SD=13.4 cc) and group overlap, the group means differing by 2.8 control group SDs. The BSI yielded mean ventricular volume losses of 0.4 cc (controls) and 10.1 cc (AD). Good linear correlation (r=0.997) was obtained between the ventricular BSI and the difference in their segmented volumes. We conclude the BSI is an accurate and robust measure of regional and global cerebral volume changes.

Journal Article•DOI•
TL;DR: A novel methodology and a system that can be routinely used for segmenting and estimating the volume of MS lesions via dual-echo fast spin-echo MR imagery using a recently developed concept of fuzzy objects forms the basis of this methodology.
Abstract: Multiple sclerosis (MS) is a disease of the white matter. Magnetic resonance imaging (MRI) is proven to be a sensitive method of monitoring the progression of this disease and of its changes due to treatment protocols. Quantification of the severity of the disease through estimation of MS lesion volume via MR imaging is vital for understanding and monitoring the disease and its treatment. This paper presents a novel methodology and a system that can be routinely used for segmenting and estimating the volume of MS lesions via dual-echo fast spin-echo MR imagery. A recently developed concept of fuzzy objects forms the basis of this methodology. An operator indicates a few points in the images by pointing to the white matter, the grey matter, and the cerebrospinal fluid (CSF). Each of these objects is then detected as a fuzzy connected set. The holes in the union of these objects correspond to potential lesion sites which are utilized to detect each potential lesion as a three-dimensional (3-D) fuzzy connected object. These objects are presented to the operator who indicates acceptance/rejection through the click of a mouse button. The number and volume of accepted lesions is then computed and output. Based on several evaluation studies, the authors conclude that the methodology is highly reliable and consistent, with a coefficient of variation (due to subjective operator actions) of 0.9% (based on 20 patient studies, three operators, and two trials) for volume and a mean false-negative volume fraction of 1.3%, with a 95% confidence interval of 0%-2.8% (based on ten patient studies).

Journal Article•DOI•
TL;DR: The authors show that replacing the class other, which includes all tissue not modeled explicitly by Gaussians with small variance, by a uniform probability density, and amending the expectation-maximization (EM) algorithm appropriately, gives significantly better results.
Abstract: The authors propose a modification of Wells et al. (ibid., vol. 15, no. 4, p. 429-42, 1996) technique for bias field estimation and segmentation of magnetic resonance (MR) images. They show that replacing the class other, which includes all tissue not modeled explicitly by Gaussians with small variance, by a uniform probability density, and amending the expectation-maximization (EM) algorithm appropriately, gives significantly better results. The authors next consider the estimation and filtering of high-frequency information in MR images, comprising noise, intertissue boundaries, and within tissue microstructures. The authors conclude that post-filtering is preferable to the prefiltering that has been proposed previously. The authors observe that the performance of any segmentation algorithm, in particular that of Wells et al. (and the authors' refinements of it) is affected substantially by the number and selection of the tissue classes that are modeled explicitly, the corresponding defining parameters and, critically, the spatial distribution of tissues in the image. The authors present an initial exploration to choose automatically the number of classes and the associated parameters that give the best output. This requires the authors to define what is meant by "best output" and for this they propose the application of minimum entropy. The methods developed have been implemented and are illustrated throughout on simulated and real data (brain and breast MR).

Journal Article•DOI•
TL;DR: A system that is being used to segment gray matter from magnetic resonance imaging (MRI) and to create connected cortical representations for functional MRI visualization (fMRI) that exploits knowledge of the anatomy of the cortex and incorporates structural constraints into the segmentation.
Abstract: Describes a system that is being used to segment gray matter from magnetic resonance imaging (MRI) and to create connected cortical representations for functional MRI visualization (fMRI). The method exploits knowledge of the anatomy of the cortex and incorporates structural constraints into the segmentation. First, the white matter and cerebral spinal fluid (CSF) regions in the MR volume are segmented using a novel techniques of posterior anisotropic diffusion. Then, the user selects the cortical white matter component of interest, and its structure is verified by checking for cavities and handles. After this, a connected representation of the gray matter is created by a constrained growing-out from the white matter boundary. Because the connectivity is computed, the segmentation can be used as input to several methods of visualizing the spatial pattern of cortical activity within gray matter. In the authors' case, the connected representation of gray matter is used to create a flattened representation of the cortex. Then, fMRI measurements are overlaid on the flattened representation, yielding a representation of the volumetric data within a single image. The software is freely available to the research community.

Journal Article•DOI•
TL;DR: A region-based measure of image edge profile acutance is proposed which characterizes the transition in density of a region of interest (ROI) along normals to the ROI at every boundary pixel and indicates the importance of including lesion edge definition with shape information for classification of tumors.
Abstract: Most benign breast tumors possess well-defined, sharp boundaries that delineate them from surrounding tissues, as opposed to malignant tumors. Computer techniques proposed to date for tumor analysis have concentrated on shape factors of tumor regions and texture measures. While shape measures based on contours of tumor regions can indicate differences in shape complexities between circumscribed and spiculated tumors, they are not designed to characterize the density variations across the boundary of a tumor. Here, the authors propose a region-based measure of image edge profile acutance which characterizes the transition in density of a region of interest (ROI) along normals to the ROI at every boundary pixel. The authors investigate the potential of acutance in quantifying the sharpness of the boundaries of tumors, and propose its application to discriminate between benign and malignant mammographic tumors. In addition, they study the complementary use of various shape factors based upon the shape of the ROI, such as compactness. Fourier descriptors, moments, and chord-length statistics to distinguish between circumscribed and spiculated tumors. Thirty-nine images from the Mammographic Image Analysis Society (MIAS) database and an additional set of 15 local cases were selected for this study. The cases included 16 circumscribed benign, 7 circumscribed malignant, 12 spiculated benign, and 19 spiculated malignant lesions. All diagnoses were proven by pathologic examinations of resected tissue. The contours of the lesions were first marked by an expert radiologist using X-Paint and X-Windows on a SUN-SPARCstation 2 Workstation. For computation of acutance, the ROI boundaries were iteratively approximated using a split/merge and end-point adjustment technique to obtain the best-fitting polygonal approximation. The jackknife method using the Mahalanobis distance measure in the BMDP (Biomedical Programs) package was used for classification of the lesions using acutance and the shape factors as features in various combinations. Acutance alone resulted in a benign/malignant classification accuracy of 95% the MIAS cases. Compactness alone gave a circumscribed/spiculated classification rate of 92.3% with the MIAS cases. Acutance in combination with a moment-based shape measure and a Fourier descriptor-based measure gave four-group classification rate of 95% with the MIAS cases. The results indicate the importance of including lesion edge definition with shape information for classification of tumors, and that the proposed measure of acutance fills this need.

Journal Article•DOI•
TL;DR: This fully automated technique produces reliable and reproducible MR image segmentation and classification while eliminating intra- and interobserver variability.
Abstract: Presents a fully automated process for segmentation and classification of multispectral magnetic resonance (MR) images This hybrid neural network method uses a Kohonen self-organizing neural network for segmentation and a multilayer backpropagation neural network for classification To separate different tissue types, this process uses the standard T1-, T2-, and PD-weighted MR images acquired in clinical examinations Volumetric measurements of brain structures, relative to intracranial volume, were calculated for an index transverse section in 14 normal subjects (median age 25 years; 7 male, 7 female) This index slice was at the level of the basal ganglia, included both genu and splenium of the corpus callosum, and generally, showed the putamen and lateral ventricle An intraclass correlation of this automated segmentation and classification of tissues with the accepted standard of radiologist identification for the index slice in the 14 volunteers demonstrated coefficients (r/sub i/) of 091, 095, and 098 for white matter, gray matter, and ventricular cerebrospinal fluid (CSF), respectively An analysis of variance for estimates of brain parenchyma volumes in 5 volunteers imaged 5 times each demonstrated high intrasubject reproducibility with a significance of at least p<005 for white matter, gray matter, and white/gray partial volumes The population variation, across 14 volunteers, demonstrated little deviation from the averages for gray and white matter, while partial volume classes exhibited a slightly higher degree of variability This fully automated technique produces reliable and reproducible MR image segmentation and classification while eliminating intra- and interobserver variability

Journal Article•DOI•
TL;DR: Presents an automated, knowledge-based method for segmenting chest computed tomography datasets and suggests that use of expert knowledge provides an increased level of automation compared with low-level segmentation techniques and may better discriminate between structures of similar attenuation and anatomic contiguity.
Abstract: Presents an automated, knowledge-based method for segmenting chest computed tomography (CT) datasets. Anatomical knowledge including expected volume, shape, relative position, and X-ray attenuation of organs provides feature constraints that guide the segmentation process. Knowledge is represented at a high level using an explicit anatomical model. The model is stored in a frame-based semantic network and anatomical variability is incorporated using fuzzy sets. A blackboard architecture permits the data representation and processing algorithms in the model domain to be independent of those in the image domain. Knowledge-constrained segmentation routines extract contiguous three-dimensional (3-D) sets of voxels, and their feature-space representations are posted on the blackboard. An inference engine uses fuzzy logic to match image to model objects based on the feature constraints. Strict separation of model and image domains allows for systematic extension of the knowledge base. In preliminary experiments, the method has been applied to a small number of thoracic CT datasets. Based on subjective visual assessment by experienced thoracic radiologists, basic anatomic structures such as the lungs, central tracheobronchial tree, chest wall, and mediastinum were successfully segmented. To demonstrate the extensibility of the system, knowledge was added to represent the more complex anatomy of lung lesions in contact with vessels or the chest wall. Visual inspection of these segmented lesions was also favorable. These preliminary results suggest that use of expert knowledge provides an increased level of automation compared with low-level segmentation techniques. Moreover, the knowledge-based approach may better discriminate between structures of similar attenuation and anatomic contiguity. Further validation is required.

Journal Article•DOI•
S. Sandor1, Richard M. Leahy•
TL;DR: The approach the authors take is to model a prelabeled brain atlas as a physical object and give it elastic properties, allowing it to warp itself onto regions in a preprocessed image.
Abstract: The authors describe a computerized method to automatically find and label the cortical surface in three-dimensional (3-D) magnetic resonance (MR) brain images. The approach the authors take is to model a prelabeled brain atlas as a physical object and give it elastic properties, allowing it to warp itself onto regions in a preprocessed image. Preprocessing consists of boundary-finding and a morphological procedure which automatically extracts the brain and sulci from an MR image and provides a smoothed representation of the brain surface to which the deformable model can rapidly converge. The authors' deformable models are energy-minimizing elastic surfaces that can accurately locate image features. The models are parameterized with 3-D bicubic B-spline surfaces. The authors design the energy function such that cortical fissure (sulci) points on the model are attracted to fissure points on the image and the remaining model points are attracted to the brain surface. A conjugate gradient method minimizes the energy function, allowing the model to automatically converge to the smoothed brain surface. Finally, labels are propagated from the deformed atlas onto the high-resolution brain surface.

Journal Article•DOI•
TL;DR: The elastic body spline is a physical model of a homogeneous, isotropic three-dimensional (3-D) elastic body that is used to match 3-D magnetic resonance images of the breast that are used in the diagnosis and evaluation of breast cancer.
Abstract: Many image matching schemes are based on mapping coordinate locations, such as the locations of landmarks, in one image to corresponding locations in a second image. A new approach to this mapping (coordinate transformation), called the elastic body spline (EBS), is described. The spline is based on a physical model of a homogeneous, isotropic three-dimensional (3-D) elastic body. The model can approximate the way that some physical objects deform. The EBS as well as the affine transformation, the thin plate spline and the volume spline are used to match 3-D magnetic resonance images (MRI's) of the breast that are used in the diagnosis and evaluation of breast cancer. These coordinate transformations are evaluated with different types of deformations and different numbers of corresponding (paired) coordinate locations. In all but one of the cases considered, using the EBS yields more similar images than the other methods.

Journal Article•DOI•
TL;DR: The technique can determine unknown patient motion or use knowledge of motion from other measures as a starting estimate and is iteratively refined using the image entropy to enable automatic focusing of motion corrupted magnetic resonance images.
Abstract: Presents the use of an entropy focus criterion to enable automatic focusing of motion corrupted magnetic resonance images. The authors demonstrate the principle using illustrative examples from cooperative volunteers. Their technique can determine unknown patient motion or use knowledge of motion from other measures as a starting estimate. The motion estimate is used to compensate the acquired data and is iteratively refined using the image entropy. Entropy focuses the whole image principally by favoring the removal of motion induced ghosts and blurring from otherwise dark regions of the image. Using only the image data, and no special hardware or pulse sequences, the authors demonstrate correction for arbitrary rigid-body translational motion in the imaging plane and for a single rotation. Extension to three-dimensional (3-D) and more general motion should be possible. The algorithm is able to determine volunteer motion well. The mean absolute deviation between algorithm and navigator-echo-determined motion is comparable to the displacement step size used in the algorithm. Local deviations from the recorded motion or navigator-determined motion are explained and the authors indicate how enhanced focus criteria may be derived. In all cases they were able to compensate images for patient motion, reducing blurring and ghosting.

Journal Article•DOI•
TL;DR: A simple data acquisition technique to reduce the effect of head motion during scans is described, which associates the incoming data with the real-space position of the head.
Abstract: Positron emission tomography (PET) is a relatively lengthy brain imaging method. Because it is difficult for the subject to stay still during the data acquisition, head motion during scans is a source of image degradation. A simple data acquisition technique to reduce the effect of this problem is described. The technique associates the incoming data with the real-space position of the head. During the PET scan, the head position is constantly monitored with two video cameras and compared to its initial position. Every time the displacement for a region within the field of view (FOV) is larger than a specified threshold displacement, the PET data acquisition system starts to save the PET data in a new frame. The total number of frames required for a complete study depends on the magnitude of the head motion during the study and on the threshold displacement. At the end of the study, all the acquired frames are reconstructed independently and each image is rotated and translated to coincide with the initial position. When these images are summed, they produce a final image with fewer motion artefacts.

Journal Article•DOI•
TL;DR: The new grouped-coordinate ascent (GCA) algorithms in the class overcome several limitations associated with previous algorithms, and it is shown that the GCA algorithms converge faster than the SCA algorithm, even on conventional workstations.
Abstract: Presents a new class of algorithms for penalized-likelihood reconstruction of attenuation maps from low-count transmission scans. We derive the algorithms by applying to the transmission log-likelihood a version of the convexity technique developed by De Pierro for emission tomography. The new class includes the single-coordinate ascent (SCA) algorithm and Lange's convex algorithm for transmission tomography as special cases. The new grouped-coordinate ascent (GCA) algorithms in the class overcome several limitations associated with previous algorithms. (1) Fewer exponentiations are required than in the transmission maximum likelihood-expectation maximization (ML-EM) algorithm or in the SCA algorithm. (2) The algorithms intrinsically accommodate nonnegativity constraints, unlike many gradient-based methods. (3) The algorithms are easily parallelizable, unlike the SCA algorithm and perhaps line-search algorithms. We show that the GCA algorithms converge faster than the SCA algorithm, even on conventional workstations. An example from a low-count positron emission tomography (PET) transmission scan illustrates the method.

Journal Article•DOI•
TL;DR: The authors show that general mammographic parenchymal and ductal patterns can be well modeled by a set of parameters of affine transformations and demonstrate that the fractal modeling method is an effective way to enhance microcalcifications.
Abstract: The objective of this research is to model the mammographic parenchymal and ductal patterns and enhance the microcalcifications using a deterministic fractal approach. According to the theory of deterministic fractal geometry, images can be modeled by deterministic fractal objects which are attractors of sets of two-dimensional (2-D) affine transformations. The iterated functions systems and the collage theorem are the mathematical foundations of fractal image modeling. Here, a methodology based on fractal image modeling is developed to analyze and model breast background structures. The authors show that general mammographic parenchymal and ductal patterns can be well modeled by a set of parameters of affine transformations. Therefore, microcalcifications can be enhanced by taking the difference between the original image and the modeled image. The authors' results are compared with those of the partial wavelet reconstruction and morphological operation approaches. The results demonstrate that the fractal modeling method is an effective way to enhance microcalcifications. It may also be able to improve the detection and classification of microcalcifications in a computer-aided diagnosis system.

Journal Article•DOI•
TL;DR: A Bayesian formulation of the inverse problem in which a Gibbs prior is constructed to reflect the sparse focal nature of neural current sources associated with evoked response data is described.
Abstract: The authors describe a new approach to imaging neural current sources from measurements of the magnetoencephalogram (MEG) associated with sensory, motor, or cognitive brain activation. Many previous approaches to this problem have concentrated on the use of weighted minimum norm (WMN) inverse methods. While these methods ensure a unique solution, they do not introduce information specific to the MEG inverse problem, often producing overly smoothed solutions and exhibiting severe sensitivity to noise. The authors describe a Bayesian formulation of the inverse problem in which a Gibbs prior is constructed to reflect the sparse focal nature of neural current sources associated with evoked response data. The authors demonstrate the method with simulated and experimental phantom data, comparing its performance with several WMN methods.

Journal Article•DOI•
TL;DR: Results are presented showing that the new approach is more accurate than the half-max method at estimating wall location for thin-walled airways and a maximum-likelihood method to estimate the airway inner and outer radius.
Abstract: Airway geometry measurements can provide information regarding pulmonary physiology and pathophysiology. There has been considerable interest in measuring intrathoracic airways in two-dimensional (2-D) slices from volumetric X-ray computed tomography (CT). Such measurements can be used to evaluate and track the progression of diseases affecting the airways. A popular airway measurement method uses the "half-max" criteria, in which the gray level at the airway wall is estimated to be halfway between the minimum and maximum gray levels along a ray crossing the edge. However, because the scanning process introduces blurring, the half-max approach may not be applicable across all airway sizes. The authors propose a new measurement method based on a model of the scanning process. In their approach, they examine the gray-level profile of a ray crossing the airway wall and use a maximum-likelihood method to estimate the airway inner and outer radius. Using CT scans of a physical phantom, the authors present results showing that the new approach is more accurate than the half-max method at estimating wall location for thin-walled airways.

Journal Article•DOI•
TL;DR: A new model-based vision (MBV) algorithm is developed to find regions of interest corresponding to masses in digitized mammograms and to classify the masses as malignant/benign, demonstrating that the MBV approach provides a structured order of integrating complex stages into a system for radiologists.
Abstract: A new model-based vision (MBV) algorithm is developed to find regions of interest (ROI's) corresponding to masses in digitized mammograms and to classify the masses as malignant/benign. The MBV algorithm is comprised of 5 modules to structurally identify suspicious ROI's, eliminate false positives, and classify the remaining as malignant or benign. The focus of attention module uses a difference of Gaussians (DoG) filter to highlight suspicious regions in the mammogram. The index module uses tests to reduce the number of nonmalignant regions from 8.39 to 2.36 per full breast image. Size, shape, contrast, and Laws texture features are used to develop the prediction module's mass models. Derivative-based feature saliency techniques are used to determine the best features for classification. Nine features are chosen to define the malignant/benign models. The feature extraction module obtains these features from all suspicious ROI's. The matching module classifies the regions using a multilayer perceptron neural network architecture to obtain an overall classification accuracy of 100% for the segmented malignant masses with a false-positive rate of 1.8 per full breast image. This system has a sensitivity of 92% for locating malignant ROI's. The database contains 272 images (12 b, 100 /spl mu/m) with 36 malignant and 53 benign mass images. The results demonstrate that the MBV approach provides a structured order of integrating complex stages into a system for radiologists.

Journal Article•DOI•
Yan Zhu1, Zhu Yan1•
TL;DR: The authors present a new approach for detection of brain tumor boundaries in medical images using a Hopfield neural network that produces results comparable to those of standard "snakes"-based algorithms, but it requires less computing time.
Abstract: The authors present a new approach for detection of brain tumor boundaries in medical images using a Hopfield neural network. The boundary detection problem is formulated as an optimization process that seeks the boundary points to minimize an energy functional based on an active contour model. A modified Hopfield network is constructed to solve the optimization problem. Taking advantage of the collective computational ability and energy convergence capability of the Hopfield network, the authors' method produces the results comparable to those of standard "snakes"-based algorithms, but it requires less computing time. With the parallel processing potential of the Hopfield network, the proposed boundary detection can be implemented for real time processing. Experiments on different magnetic resonance imaging (MRI) data sets show the effectiveness of the authors' approach.

Journal Article•DOI•
TL;DR: New deformable spline algorithms for determining vessel boundaries, and enhancing their centerline features are presented, found to be specially robust in complex images involving vessel branchings and incomplete contrast filling.
Abstract: Although current edge-following schemes can be very efficient in determining coronary boundaries, they may fail when the feature to be followed is disconnected (and the scheme is unable to bridge the discontinuity) or branch points exist where the best path to follow is indeterminate. Here, the authors present new deformable spline algorithms for determining vessel boundaries, and enhancing their centerline features. A bank of even and odd S-Gabor filter pairs of different orientations are convolved with vascular images in order to create an external snake energy field. Each fitter pair will give maximum response to the segment of vessel having the same orientation as the filters. The resulting responses across filters of different orientations are combined to create an external energy field for snake optimization. Vessels are represented by B-Spline snakes, and are optimized on filter outputs with dynamic programming. The points of minimal constriction and the percent-diameter stenosis are determined from a computed vessel centerline. The system has been statistically validated using fixed stenosis and flexible-tube phantoms. It has also been validated on 20 coronary lesions with two independent operators, and has been tested for interoperator and intraoperator variability and reproducibility. The system has been found to be specially robust in complex images involving vessel branchings and incomplete contrast filling.

Journal Article•DOI•
TL;DR: An alignment routine developed to register an image of a fixed object containing a global offset error, rotation error, and magnification error relative to a second image, which is a fast, robust, and automatic alignment algorithm.
Abstract: A number of digital imaging techniques in medicine require the combination of multiple images. Using these techniques, it is essential that the images be adequately aligned and registered prior to addition, subtraction, or any other combination of the images. This paper describes an alignment routine developed to register an image of a fixed object containing a global offset error, rotation error, and magnification error relative to a second image. The described routine uses sparsely sampled regional correlation in a novel way to reduce computation time and avoid the use of markers and human interaction. The result is a fast, robust, and automatic alignment algorithm, with accuracy better than about 0.2 pixel in a test with clinical computed radiography images.

Journal Article•DOI•
TL;DR: The authors have built an experimental in travascular impedance catheter (IIC) system according to design guidelines to make a robust reconstruction algorithm possible and have performed experiments on human iliac arteries from the section ward, showing that plastic models of arterial fatty lesions can be detected reliably.
Abstract: Recent studies show that the presence of fatty lesions in the atherosclerotic vessel wall is a risk factor for acute occlusion of blood vessels. Although fat has a high electrical resistivity, existing impedance catheter systems cannot be used for detection of these lesions because artifacts owing to impedance variations in the extravascular surroundings have a major and irretraceable effect on the measurement. Standard algorithms used in attempt to compensate for these artifacts suffer from severe instability problems. The authors defined design guidelines to be met by a new impedance catheter system in order to make a robust reconstruction algorithm possible and have built an experimental in travascular impedance catheter (IIC) system according to these guidelines, using a normalized differential measurement procedure. With this IIC, the authors performed experiments on human iliac arteries from the section ward (fixed specimens), showing that plastic models of arterial fatty lesions (8 mm/sup 3/) can be detected reliably.