scispace - formally typeset
Search or ask a question
JournalISSN: 1536-1233

IEEE Transactions on Mobile Computing 

IEEE Computer Society
About: IEEE Transactions on Mobile Computing is an academic journal published by IEEE Computer Society. The journal publishes majorly in the area(s): Computer science & Wireless network. It has an ISSN identifier of 1536-1233. Over the lifetime, 3825 publications have been published receiving 178045 citations. The journal is also known as: TMCCI & Mobile computing.


Papers
More filters
Journal ArticleDOI
TL;DR: It is proved that, with appropriate bounds on node density and intracluster and intercluster transmission ranges, HEED can asymptotically almost surely guarantee connectivity of clustered networks.
Abstract: Topology control in a sensor network balances load on sensor nodes and increases network scalability and lifetime. Clustering sensor nodes is an effective topology control approach. We propose a novel distributed clustering approach for long-lived ad hoc sensor networks. Our proposed approach does not make any assumptions about the presence of infrastructure or about node capabilities, other than the availability of multiple power levels in sensor nodes. We present a protocol, HEED (Hybrid Energy-Efficient Distributed clustering), that periodically selects cluster heads according to a hybrid of the node residual energy and a secondary parameter, such as node proximity to its neighbors or node degree. HEED terminates in O(1) iterations, incurs low message overhead, and achieves fairly uniform cluster head distribution across the network. We prove that, with appropriate bounds on node density and intracluster and intercluster transmission ranges, HEED can asymptotically almost surely guarantee connectivity of clustered networks. Simulation results demonstrate that our proposed approach is effective in prolonging the network lifetime and supporting scalable data aggregation.

4,889 citations

Journal ArticleDOI
TL;DR: BUBBLE is designed and evaluated, a novel social-based forwarding algorithm that utilizes the aforementioned metrics to enhance delivery performance and empirically shows that BUBBLE can substantially improve forwarding performance compared to a number of previously proposed algorithms including the benchmarking history-based PROPHET algorithm, and social- based forwarding SimBet algorithm.
Abstract: The increasing penetration of smart devices with networking capability form novel networks Such networks, also referred as pocket switched networks (PSNs), are intermittently connected and represent a paradigm shift of forwarding data in an ad hoc manner The social structure and interaction of users of such devices dictate the performance of routing protocols in PSNs To that end, social information is an essential metric for designing forwarding algorithms for such types of networks Previous methods relied on building and updating routing tables to cope with dynamic network conditions On the downside, it has been shown that such approaches end up being cost ineffective due to the partial capture of the transient network behavior A more promising approach would be to capture the intrinsic characteristics of such networks and utilize them in the design of routing algorithms In this paper, we exploit two social and structural metrics, namely centrality and community, using real human mobility traces The contributions of this paper are two-fold First, we design and evaluate BUBBLE, a novel social-based forwarding algorithm, that utilizes the aforementioned metrics to enhance delivery performance Second, we empirically show that BUBBLE can substantially improve forwarding performance compared to a number of previously proposed algorithms including the benchmarking history-based PROPHET algorithm, and social-based forwarding SimBet algorithm

1,426 citations

Journal ArticleDOI
TL;DR: The hybrid simulation framework Veins (Vehicles in Network Simulation), composed of the network simulator OMNeT++ and the road traffic simulator SUMO, is developed and can advance the state-of-the-art in performance evaluation of IVC and provide means to evaluate developed protocols more accurately.
Abstract: Recently, many efforts have been made to develop more efficient Inter-Vehicle Communication (IVC) protocols for on-demand route planning according to observed traffic congestion or incidents, as well as for safety applications. Because practical experiments are often not feasible, simulation of network protocol behavior in Vehicular Ad Hoc Network (VANET) scenarios is strongly demanded for evaluating the applicability of developed network protocols. In this work, we discuss the need for bidirectional coupling of network simulation and road traffic microsimulation for evaluating IVC protocols. As the selection of a mobility model influences the outcome of simulations to a great extent, the use of a representative model is necessary for producing meaningful evaluation results. Based on these observations, we developed the hybrid simulation framework Veins (Vehicles in Network Simulation), composed of the network simulator OMNeT++ and the road traffic simulator SUMO. In a proof-of-concept study, we demonstrate its advantages and the need for bidirectionally coupled simulation based on the evaluation of two protocols for incident warning over VANETs. With our developed methodology, we can advance the state-of-the-art in performance evaluation of IVC and provide means to evaluate developed protocols more accurately.

1,356 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented a detailed analytical study of the spatial node distribution generated by random waypoint mobility and derived an exact equation of the asymptotically stationary distribution for movement on a line segment and an accurate approximation for a square area.
Abstract: The random waypoint model is a commonly used mobility model in the simulation of ad hoc networks It is known that the spatial distribution of network nodes moving according to this model is, in general, nonuniform However, a closed-form expression of this distribution and an in-depth investigation is still missing This fact impairs the accuracy of the current simulation methodology of ad hoc networks and makes it impossible to relate simulation-based performance results to corresponding analytical results To overcome these problems, we present a detailed analytical study of the spatial node distribution generated by random waypoint mobility More specifically, we consider a generalization of the model in which the pause time of the mobile nodes is chosen arbitrarily in each waypoint and a fraction of nodes may remain static for the entire simulation time We show that the structure of the resulting distribution is the weighted sum of three independent components: the static, pause, and mobility component This division enables us to understand how the model's parameters influence the distribution We derive an exact equation of the asymptotically stationary distribution for movement on a line segment and an accurate approximation for a square area The good quality of this approximation is validated through simulations using various settings of the mobility parameters In summary, this article gives a fundamental understanding of the behavior of the random waypoint model

1,122 citations

Journal ArticleDOI
TL;DR: A simplified model based on the renewal theory is used to study how the parameters of the distribution impact the performance in terms of the delivery delay of well-founded opportunistic forwarding algorithms in the context of human-carried devices.
Abstract: We study data transfer opportunities between wireless devices carried by humans. We observe that the distribution of the intercontact time (the time gap separating two contacts between the same pair of devices) may be well approximated by a power law over the range [10 minutes; 1 day]. This observation is confirmed using eight distinct experimental data sets. It is at odds with the exponential decay implied by the most commonly used mobility models. In this paper, we study how this newly uncovered characteristic of human mobility impacts one class of forwarding algorithms previously proposed. We use a simplified model based on the renewal theory to study how the parameters of the distribution impact the performance in terms of the delivery delay of these algorithms. We make recommendations for the design of well-founded opportunistic forwarding algorithms in the context of human-carried devices

998 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023609
2022515
2021375
2020354
2019215
2018214