scispace - formally typeset
Search or ask a question
JournalISSN: 1536-125X

IEEE Transactions on Nanotechnology 

Institute of Electrical and Electronics Engineers
About: IEEE Transactions on Nanotechnology is an academic journal published by Institute of Electrical and Electronics Engineers. The journal publishes majorly in the area(s): Nanowire & Logic gate. It has an ISSN identifier of 1536-125X. Over the lifetime, 2589 publications have been published receiving 64303 citations. The journal is also known as: Transactions on nanotechnology & Nanotechnology, IEEE transactions on.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the fabrication and electronic properties of devices based on individual carbon nanotubes are reviewed, and both metallic and semiconducting SWNTs are found to possess electrical characteristics that compare favorably to the best electronic materials available.
Abstract: Single-walled carbon nanotubes (SWNTs) have emerged as a very promising new class of electronic materials. The fabrication and electronic properties of devices based on individual SWNTs are reviewed. Both metallic and semiconducting SWNTs are found to possess electrical characteristics that compare favorably to the best electronic materials available. Manufacturability issues, however, remain a major challenge.

1,206 citations

Journal ArticleDOI
TL;DR: This paper describes a project to create a novel design and simulation tool for quantum-dot cellular automata (QCA), namely QCADesigner, which has already been used to design full-adders, barrel shifters, random-access memories, etc.
Abstract: This paper describes a project to create a novel design and simulation tool for quantum-dot cellular automata (QCA), namely QCADesigner. QCA logic and circuit designers require a rapid and accurate simulation and design layout tool to determine the functionality of QCA circuits. QCADesigner gives the designer the ability to quickly layout a QCA design by providing an extensive set of CAD tools. As well, several simulation engines facilitate rapid and accurate simulation. This tool has already been used to design full-adders, barrel shifters, random-access memories, etc. These verified layouts provide motivation to continue efforts toward a final implementation of QCA circuits.

827 citations

Journal ArticleDOI
TL;DR: In this paper, a new scanning-probe-based data-storage concept called the "millipede" is presented, which combines ultrahigh density, terabit capacity, small form factor, and high data rate.
Abstract: Present a new scanning-probe-based data-storage concept called the "millipede" that combines ultrahigh density, terabit capacity, small form factor, and high data rate. Ultrahigh storage density has been demonstrated by a new thermomechanical local-probe technique to store, read back, and erase data in very thin polymer films. With this new technique, nanometer-sized bit indentations and pitch sizes have been made by a single cantilever/tip into thin polymer layers, resulting in a data storage densities of up to 1 Tb/in/sup 2/. High data rates are achieved by parallel operation of large two-dimensional (2-D) atomic force microscope (AFM) arrays that have been batch-fabricated by silicon surface-micromachining techniques. The very large-scale integration (VLSI) of micro/nanomechanical devices (cantilevers/tips) on a single chip leads to the largest and densest 2-D array of 32/spl times/32 (1024) AFM cantilevers with integrated write/read/erase storage functionality ever built. Time-multiplexed electronics control the functional storage cycles for parallel operation of the millipede array chip. Initial areal densities of 100-200 Gb/in/sup 2/ have been achieved with the 32/spl times/32 array chip.

800 citations

Journal ArticleDOI
TL;DR: The results of this benchmarking exercise indicate that while these novel nanoelectronic devices show promise and opportunities for future logic applications, there still remain shortcomings in the device characteristics and electrostatics that need to be overcome.
Abstract: Recently there has been tremendous progress made in the research of novel nanotechnology for future nanoelectronic applications. In particular, several emerging nanoelectronic devices such as carbon-nanotube field-effect transistors (FETs), Si nanowire FETs, and planar III-V compound semiconductor (e.g., InSb, InAs) FETs, all hold promise as potential device candidates to be integrated onto the silicon platform for enhancing circuit functionality and also for extending Moore's Law. For high-performance and low-power logic transistor applications, it is important that these research devices are frequently benchmarked against the existing Si logic transistor data in order to gauge the progress of research. In this paper, we use four key device metrics to compare these emerging nanoelectronic devices to the state-of-the-art planar and nonplanar Si logic transistors. These four metrics include: 1) CV/I or intrinsic gate delay versus physical gate length L/sub g/; 2) energy-delay product versus L/sub g/; 3) subthreshold slope versus L/sub g/; and 4) CV/I versus on-to-off-state current ratio I/sub ON//I/sub OFF/. The results of this benchmarking exercise indicate that while these novel nanoelectronic devices show promise and opportunities for future logic applications, there still remain shortcomings in the device characteristics and electrostatics that need to be overcome. We believe that benchmarking is a key element in accelerating the progress of nanotechnology research for logic transistor applications.

630 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a technique to directly excite Luttinger liquid collective modes in carbon nanotubes at gigahertz frequencies by modeling the nanotube as a nano-transmission line with distributed kinetic and magnetic inductance as well as distributed quantum and electrostatic capacitance.
Abstract: Presents a technique to directly excite Luttinger liquid collective modes in carbon nanotubes at gigahertz frequencies. By modeling the nanotube as a nano-transmission line with distributed kinetic and magnetic inductance as well as distributed quantum and electrostatic capacitance, we calculate the complex frequency-dependent impedance for a variety of measurement geometries. Exciting voltage waves on the nano-transmission line is equivalent to directly exciting the yet-to-be observed one-dimensional plasmons, the low energy excitation of a Luttinger liquid. Our technique has already been applied to two-dimensional plasmons and should work well for one-dimensional plasmons. Tubes of length 100 microns must be grown for gigahertz resonance frequencies. Ohmic contact is not necessary with our technique; capacitive contacts can work. Our modeling has applications in potentially terahertz nanotube transistors and RF nanospintronics.

617 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023102
2022165
2021104
2020122
2019155
2018182