Journal•ISSN: 1045-9227

# IEEE Transactions on Neural Networks

About: IEEE Transactions on Neural Networks is an academic journal. The journal publishes majorly in the area(s): Artificial neural network & Recurrent neural network. It has an ISSN identifier of 1045-9227. Over the lifetime, 6794 publication(s) have been published receiving 522047 citation(s).

Topics: Artificial neural network, Recurrent neural network, Control theory, Support vector machine, Adaptive control

##### Papers published on a yearly basis

##### Papers

More filters

••

Yale University

^{1}TL;DR: It is demonstrated that neural networks can be used effectively for the identification and control of nonlinear dynamical systems and the models introduced are practically feasible.

Abstract: It is demonstrated that neural networks can be used effectively for the identification and control of nonlinear dynamical systems. The emphasis is on models for both identification and control. Static and dynamic backpropagation methods for the adjustment of parameters are discussed. In the models that are introduced, multilayer and recurrent networks are interconnected in novel configurations, and hence there is a real need to study them in a unified fashion. Simulation results reveal that the identification and adaptive control schemes suggested are practically feasible. Basic concepts and definitions are introduced throughout, and theoretical questions that have to be addressed are also described. >

7,508 citations

••

TL;DR: The Marquardt algorithm for nonlinear least squares is presented and is incorporated into the backpropagation algorithm for training feedforward neural networks and is found to be much more efficient than either of the other techniques when the network contains no more than a few hundred weights.

Abstract: The Marquardt algorithm for nonlinear least squares is presented and is incorporated into the backpropagation algorithm for training feedforward neural networks. The algorithm is tested on several function approximation problems, and is compared with a conjugate gradient algorithm and a variable learning rate algorithm. It is found that the Marquardt algorithm is much more efficient than either of the other techniques when the network contains no more than a few hundred weights. >

6,422 citations

••

TL;DR: Decomposition implementations for two "all-together" multiclass SVM methods are given and it is shown that for large problems methods by considering all data at once in general need fewer support vectors.

Abstract: Support vector machines (SVMs) were originally designed for binary classification. How to effectively extend it for multiclass classification is still an ongoing research issue. Several methods have been proposed where typically we construct a multiclass classifier by combining several binary classifiers. Some authors also proposed methods that consider all classes at once. As it is computationally more expensive to solve multiclass problems, comparisons of these methods using large-scale problems have not been seriously conducted. Especially for methods solving multiclass SVM in one step, a much larger optimization problem is required so up to now experiments are limited to small data sets. In this paper we give decomposition implementations for two such "all-together" methods. We then compare their performance with three methods based on binary classifications: "one-against-all," "one-against-one," and directed acyclic graph SVM (DAGSVM). Our experiments indicate that the "one-against-one" and DAG methods are more suitable for practical use than the other methods. Results also show that for large problems methods by considering all data at once in general need fewer support vectors.

6,178 citations

••

TL;DR: This work shows why gradient based learning algorithms face an increasingly difficult problem as the duration of the dependencies to be captured increases, and exposes a trade-off between efficient learning by gradient descent and latching on information for long periods.

Abstract: Recurrent neural networks can be used to map input sequences to output sequences, such as for recognition, production or prediction problems. However, practical difficulties have been reported in training recurrent neural networks to perform tasks in which the temporal contingencies present in the input/output sequences span long intervals. We show why gradient based learning algorithms face an increasingly difficult problem as the duration of the dependencies to be captured increases. These results expose a trade-off between efficient learning by gradient descent and latching on information for long periods. Based on an understanding of this problem, alternatives to standard gradient descent are considered. >

5,798 citations

••

TL;DR: Using maximum entropy approximations of differential entropy, a family of new contrast (objective) functions for ICA enable both the estimation of the whole decomposition by minimizing mutual information, and estimation of individual independent components as projection pursuit directions.

Abstract: Independent component analysis (ICA) is a statistical method for transforming an observed multidimensional random vector into components that are statistically as independent from each other as possible. We use a combination of two different approaches for linear ICA: Comon's information theoretic approach and the projection pursuit approach. Using maximum entropy approximations of differential entropy, we introduce a family of new contrast functions for ICA. These contrast functions enable both the estimation of the whole decomposition by minimizing mutual information, and estimation of individual independent components as projection pursuit directions. The statistical properties of the estimators based on such contrast functions are analyzed under the assumption of the linear mixture model, and it is shown how to choose contrast functions that are robust and/or of minimum variance. Finally, we introduce simple fixed-point algorithms for practical optimization of the contrast functions.

5,716 citations