scispace - formally typeset
Search or ask a question

Showing papers in "IEEE Transactions on Neural Networks in 2016"


Journal ArticleDOI
TL;DR: Extensive experiments on various widely used classification data sets show that the proposed algorithm achieves better and faster convergence than the existing state-of-the-art hierarchical learning methods, and multiple applications in computer vision further confirm the generality and capability of the proposed learning scheme.
Abstract: Extreme learning machine (ELM) is an emerging learning algorithm for the generalized single hidden layer feedforward neural networks, of which the hidden node parameters are randomly generated and the output weights are analytically computed. However, due to its shallow architecture, feature learning using ELM may not be effective for natural signals (e.g., images/videos), even with a large number of hidden nodes. To address this issue, in this paper, a new ELM-based hierarchical learning framework is proposed for multilayer perceptron. The proposed architecture is divided into two main components: 1) self-taught feature extraction followed by supervised feature classification and 2) they are bridged by random initialized hidden weights. The novelties of this paper are as follows: 1) unsupervised multilayer encoding is conducted for feature extraction, and an ELM-based sparse autoencoder is developed via $\ell _{1}$ constraint. By doing so, it achieves more compact and meaningful feature representations than the original ELM; 2) by exploiting the advantages of ELM random feature mapping, the hierarchically encoded outputs are randomly projected before final decision making, which leads to a better generalization with faster learning speed; and 3) unlike the greedy layerwise training of deep learning (DL), the hidden layers of the proposed framework are trained in a forward manner. Once the previous layer is established, the weights of the current layer are fixed without fine-tuning. Therefore, it has much better learning efficiency than the DL. Extensive experiments on various widely used classification data sets show that the proposed algorithm achieves better and faster convergence than the existing state-of-the-art hierarchical learning methods. Furthermore, multiple applications in computer vision further confirm the generality and capability of the proposed learning scheme.

1,166 citations


Journal ArticleDOI
TL;DR: Considering the dynamics of the overall closed-loop system, nonlinear model predictive control method is proposed to guarantee the system stability and compensate the network-induced delays and packet dropouts and to demonstrate the effectiveness of the proposed method.
Abstract: This paper investigates the multirate networked industrial process control problem in double-layer architecture. First, the output tracking problem for sampled-data nonlinear plant at device layer with sampling period $T_{d}$ is investigated using adaptive neural network (NN) control, and it is shown that the outputs of subsystems at device layer can track the decomposed setpoints. Then, the outputs and inputs of the device layer subsystems are sampled with sampling period $T_{u}$ at operation layer to form the index prediction, which is used to predict the overall performance index at lower frequency. Radial basis function NN is utilized as the prediction function due to its approximation ability. Then, considering the dynamics of the overall closed-loop system, nonlinear model predictive control method is proposed to guarantee the system stability and compensate the network-induced delays and packet dropouts. Finally, a continuous stirred tank reactor system is given in the simulation part to demonstrate the effectiveness of the proposed method.

567 citations


Journal ArticleDOI
Maoguo Gong1, Jiaojiao Zhao1, Jia Liu1, Qiguang Miao1, Licheng Jiao1 
TL;DR: This paper presents a novel change detection approach for synthetic aperture radar images based on deep learning that accomplishes the detection of the changed and unchanged areas by designing a deep neural network.
Abstract: This paper presents a novel change detection approach for synthetic aperture radar images based on deep learning. The approach accomplishes the detection of the changed and unchanged areas by designing a deep neural network. The main guideline is to produce a change detection map directly from two images with the trained deep neural network. The method can omit the process of generating a difference image (DI) that shows difference degrees between multitemporal synthetic aperture radar images. Thus, it can avoid the effect of the DI on the change detection results. The learning algorithm for deep architectures includes unsupervised feature learning and supervised fine-tuning to complete classification. The unsupervised feature learning aims at learning the representation of the relationships between the two images. In addition, the supervised fine-tuning aims at learning the concepts of the changed and unchanged pixels. Experiments on real data sets and theoretical analysis indicate the advantages, feasibility, and potential of the proposed method. Moreover, based on the results achieved by various traditional algorithms, respectively, deep learning can further improve the detection performance.

513 citations


Journal ArticleDOI
TL;DR: Experimental analyses show that machine learning algorithms can detect attacks with performances higher than attack detection algorithms that employ state vector estimation methods in the proposed attack detection framework.
Abstract: Attack detection problems in the smart grid are posed as statistical learning problems for different attack scenarios in which the measurements are observed in batch or online settings. In this approach, machine learning algorithms are used to classify measurements as being either secure or attacked. An attack detection framework is provided to exploit any available prior knowledge about the system and surmount constraints arising from the sparse structure of the problem in the proposed approach. Well-known batch and online learning algorithms (supervised and semisupervised) are employed with decision- and feature-level fusion to model the attack detection problem. The relationships between statistical and geometric properties of attack vectors employed in the attack scenarios and learning algorithms are analyzed to detect unobservable attacks using statistical learning methods. The proposed algorithms are examined on various IEEE test systems. Experimental analyses show that machine learning algorithms can detect attacks with performances higher than attack detection algorithms that employ state vector estimation methods in the proposed attack detection framework.

470 citations


Journal ArticleDOI
TL;DR: This paper proposes to eliminate the drawbacks of traditional salient band selection methods by manifold ranking and puts the band vectors in the more accurate manifold space and treats the saliency problem from a novel ranking perspective, which is considered to be the main contributions of this paper.
Abstract: Saliency detection has been a hot topic in recent years, and many efforts have been devoted in this area. Unfortunately, the results of saliency detection can hardly be utilized in general applications. The primary reason, we think, is unspecific definition of salient objects, which makes that the previously published methods cannot extend to practical applications. To solve this problem, we claim that saliency should be defined in a context and the salient band selection in hyperspectral image (HSI) is introduced as an example. Unfortunately, the traditional salient band selection methods suffer from the problem of inappropriate measurement of band difference. To tackle this problem, we propose to eliminate the drawbacks of traditional salient band selection methods by manifold ranking. It puts the band vectors in the more accurate manifold space and treats the saliency problem from a novel ranking perspective, which is considered to be the main contributions of this paper. To justify the effectiveness of the proposed method, experiments are conducted on three HSIs, and our method is compared with the six existing competitors. Results show that the proposed method is very effective and can achieve the best performance among the competitors.

444 citations


Journal ArticleDOI
TL;DR: In order to stabilize a class of uncertain nonlinear strict-feedback systems with full-state constraints, an adaptive neural network control method is investigated and it is proved that all the signals in the closed-loop system are semiglobal uniformly ultimately bounded and the output is well driven to follow the desired output.
Abstract: In order to stabilize a class of uncertain nonlinear strict-feedback systems with full-state constraints, an adaptive neural network control method is investigated in this paper. The state constraints are frequently emerged in the real-life plants and how to avoid the violation of state constraints is an important task. By introducing a barrier Lyapunov function (BLF) to every step in a backstepping procedure, a novel adaptive backstepping design is well developed to ensure that the full-state constraints are not violated. At the same time, one remarkable feature is that the minimal learning parameters are employed in BLF backstepping design. By making use of Lyapunov analysis, we can prove that all the signals in the closed-loop system are semiglobal uniformly ultimately bounded and the output is well driven to follow the desired output. Finally, a simulation is given to verify the effectiveness of the method.

404 citations


Journal ArticleDOI
TL;DR: An alternating direction method (ADM)-based nonnegative latent factor (ANLF) model is proposed, which ensures fast convergence and high prediction accuracy, as well as the maintenance of nonnegativity constraints.
Abstract: Nonnegative matrix factorization (NMF)-based models possess fine representativeness of a target matrix, which is critically important in collaborative filtering (CF)-based recommender systems. However, current NMF-based CF recommenders suffer from the problem of high computational and storage complexity, as well as slow convergence rate, which prevents them from industrial usage in context of big data. To address these issues, this paper proposes an alternating direction method (ADM)-based nonnegative latent factor (ANLF) model. The main idea is to implement the ADM-based optimization with regard to each single feature, to obtain high convergence rate as well as low complexity. Both computational and storage costs of ANLF are linear with the size of given data in the target matrix, which ensures high efficiency when dealing with extremely sparse matrices usually seen in CF problems. As demonstrated by the experiments on large, real data sets, ANLF also ensures fast convergence and high prediction accuracy, as well as the maintenance of nonnegativity constraints. Moreover, it is simple and easy to implement for real applications of learning systems.

295 citations


Journal ArticleDOI
TL;DR: This paper aims to solve the model-free optimal tracking control problem of nonaffine nonlinear discrete-time systems with a critic-only Q-learning (CoQL) method, which avoids solving the tracking Hamilton-Jacobi-Bellman equation.
Abstract: Model-free control is an important and promising topic in control fields, which has attracted extensive attention in the past few years. In this paper, we aim to solve the model-free optimal tracking control problem of nonaffine nonlinear discrete-time systems. A critic-only Q-learning (CoQL) method is developed, which learns the optimal tracking control from real system data, and thus avoids solving the tracking Hamilton–Jacobi–Bellman equation. First, the Q-learning algorithm is proposed based on the augmented system, and its convergence is established. Using only one neural network for approximating the Q-function, the CoQL method is developed to implement the Q-learning algorithm. Furthermore, the convergence of the CoQL method is proved with the consideration of neural network approximation error. With the convergent Q-function obtained from the CoQL method, the adaptive optimal tracking control is designed based on the gradient descent scheme. Finally, the effectiveness of the developed CoQL method is demonstrated through simulation studies. The developed CoQL method learns with off-policy data and implements with a critic-only structure, thus it is easy to realize and overcome the inadequate exploration problem.

245 citations


Journal ArticleDOI
TL;DR: The I-DEMS is an optimal or near-optimal DEMS capable of performing grid-connected and islanded microgrid operations and is compared with that of a decision tree approach-based DEMS (D-D EMS).
Abstract: This paper presents the development of an intelligent dynamic energy management system (I-DEMS) for a smart microgrid. An evolutionary adaptive dynamic programming and reinforcement learning framework is introduced for evolving the I-DEMS online. The I-DEMS is an optimal or near-optimal DEMS capable of performing grid-connected and islanded microgrid operations. The primary sources of energy are sustainable, green, and environmentally friendly renewable energy systems (RESs), e.g., wind and solar; however, these forms of energy are uncertain and nondispatchable. Backup battery energy storage and thermal generation were used to overcome these challenges. Using the I-DEMS to schedule dispatches allowed the RESs and energy storage devices to be utilized to their maximum in order to supply the critical load at all times. Based on the microgrid’s system states, the I-DEMS generates energy dispatch control signals, while a forward-looking network evaluates the dispatched control signals over time. Typical results are presented for varying generation and load profiles, and the performance of I-DEMS is compared with that of a decision tree approach-based DEMS (D-DEMS). The robust performance of the I-DEMS was illustrated by examining microgrid operations under different battery energy storage conditions.

236 citations


Journal ArticleDOI
TL;DR: A sparse Bayesian method is introduced by exploiting Laplace priors, namely, SBLaplace, for EEG classification by learning a sparse discriminant vector with a Laplace prior in a hierarchical fashion under a Bayesian evidence framework.
Abstract: Regularization has been one of the most popular approaches to prevent overfitting in electroencephalogram (EEG) classification of brain–computer interfaces (BCIs). The effectiveness of regularization is often highly dependent on the selection of regularization parameters that are typically determined by cross-validation (CV). However, the CV imposes two main limitations on BCIs: 1) a large amount of training data is required from the user and 2) it takes a relatively long time to calibrate the classifier. These limitations substantially deteriorate the system’s practicability and may cause a user to be reluctant to use BCIs. In this paper, we introduce a sparse Bayesian method by exploiting Laplace priors, namely, SBLaplace, for EEG classification. A sparse discriminant vector is learned with a Laplace prior in a hierarchical fashion under a Bayesian evidence framework. All required model parameters are automatically estimated from training data without the need of CV. Extensive comparisons are carried out between the SBLaplace algorithm and several other competing methods based on two EEG data sets. The experimental results demonstrate that the SBLaplace algorithm achieves better overall performance than the competing algorithms for EEG classification.

232 citations


Journal ArticleDOI
TL;DR: The main purpose of this brief is to design a filter to guarantee that the augmented Markovian jump fuzzy neural networks are stable in mean-square sense and satisfy a prescribed passivity performance index by employing the Lyapunov method and the stochastic analysis technique.
Abstract: In this brief, the problems of the mixed H-infinity and passivity performance analysis and design are investigated for discrete time-delay neural networks with Markovian jump parameters represented by Takagi–Sugeno fuzzy model. The main purpose of this brief is to design a filter to guarantee that the augmented Markovian jump fuzzy neural networks are stable in mean-square sense and satisfy a prescribed passivity performance index by employing the Lyapunov method and the stochastic analysis technique. Applying the matrix decomposition techniques, sufficient conditions are provided for the solvability of the problems, which can be formulated in terms of linear matrix inequalities. A numerical example is also presented to illustrate the effectiveness of the proposed techniques.

Journal ArticleDOI
TL;DR: An output-feedback adaptive NN controller is designed through backstepping approach and it is shown that the proposed controller guarantees semiglobal boundedness of all the signals in the closed-loop systems.
Abstract: This paper focuses on the problem of adaptive neural network (NN) control for a class of nonlinear nonstrict-feedback systems via output feedback. A novel adaptive NN backstepping output-feedback control approach is first proposed for nonlinear nonstrict-feedback systems. The monotonicity of system bounding functions and the structure character of radial basis function (RBF) NNs are used to overcome the difficulties that arise from nonstrict-feedback structure. A state observer is constructed to estimate the immeasurable state variables. By combining adaptive backstepping technique with approximation capability of radial basis function NNs, an output-feedback adaptive NN controller is designed through backstepping approach. It is shown that the proposed controller guarantees semiglobal boundedness of all the signals in the closed-loop systems. Two examples are used to illustrate the effectiveness of the proposed approach.

Journal ArticleDOI
TL;DR: Comparison results between the proposed ensemble and several widely employed and state-of-the-art QoS predictors on two large, real data sets demonstrate that the former can outperform the latter well in terms of prediction accuracy.
Abstract: Automatic Web-service selection is an important research topic in the domain of service computing. During this process, reliable predictions for quality of service (QoS) based on historical service invocations are vital to users. This work aims at making highly accurate predictions for missing QoS data via building an ensemble of nonnegative latent factor (NLF) models. Its motivations are: 1) the fulfillment of nonnegativity constraints can better represent the positive value nature of QoS data, thereby boosting the prediction accuracy and 2) since QoS prediction is a learning task, it is promising to further improve the prediction accuracy with a carefully designed ensemble model. To achieve this, we first implement an NLF model for QoS prediction. This model is then diversified through feature sampling and randomness injection to form a diversified NLF model, based on which an ensemble is built. Comparison results between the proposed ensemble and several widely employed and state-of-the-art QoS predictors on two large, real data sets demonstrate that the former can outperform the latter well in terms of prediction accuracy.

Journal ArticleDOI
TL;DR: A new Lyapunov-Krasovskii functional with simple augmented terms and delay-dependent terms is constructed, and its derivative is estimated by several techniques, including free-weighting matrix and inequality estimation methods.
Abstract: This paper investigates delay-dependent stability for continuous neural networks with a time-varying delay. This paper aims at deriving a new stability criterion, considering tradeoff between conservativeness and calculation complexity. A new Lyapunov–Krasovskii functional with simple augmented terms and delay-dependent terms is constructed, and its derivative is estimated by several techniques, including free-weighting matrix and inequality estimation methods. Then, the influence of the techniques used on the conservativeness and the complexity is analyzed one by one. Moreover, useful guidelines for improving criterion and future work are briefly discussed. Finally, the advantages of the proposed criterion compared with the existing ones are verified based on three numerical examples.

Journal ArticleDOI
TL;DR: This paper presents a novel approximation-based event-triggered control of multi-input multi-output uncertain nonlinear continuous-time systems in affine form that is approximated using a linearly parameterized neural network in the context of event-based sampling.
Abstract: This paper presents a novel approximation-based event-triggered control of multi-input multi-output uncertain nonlinear continuous-time systems in affine form. The controller is approximated using a linearly parameterized neural network (NN) in the context of event-based sampling. After revisiting the NN approximation property in the context of event-based sampling, an event-triggered condition is proposed using the Lyapunov technique to reduce the network resource utilization and to generate the required number of events for the NN approximation. In addition, a novel weight update law for aperiodic tuning of the NN weights at triggered instants is proposed to relax the knowledge of complete system dynamics and to reduce the computation when compared with the traditional NN-based control. Nonetheless, a nonzero positive lower bound for the inter-event times is guaranteed to avoid the accumulation of events or Zeno behavior. For analyzing the stability, the event-triggered system is modeled as a nonlinear impulsive dynamical system and the Lyapunov technique is used to show local ultimate boundedness of all signals. Furthermore, in order to overcome the unnecessary triggered events when the system states are inside the ultimate bound, a dead-zone operator is used to reset the event-trigger errors to zero. Finally, the analytical design is substantiated with numerical results.

Journal ArticleDOI
TL;DR: The proposed control scheme can guarantee that all signals of the resulting closed-loop system are semiglobally uniformly ultimately bounded in the sense of fourth moment, and the tracking errors eventually converge to a small neighborhood around the origin.
Abstract: In this paper, an adaptive neural decentralized control approach is proposed for a class of multiple input and multiple output uncertain stochastic nonlinear strong interconnected systems. Radial basis function neural networks are used to approximate the packaged unknown nonlinearities, and backstepping technique is utilized to construct an adaptive neural decentralized controller. The proposed control scheme can guarantee that all signals of the resulting closed-loop system are semiglobally uniformly ultimately bounded in the sense of fourth moment, and the tracking errors eventually converge to a small neighborhood around the origin. The main feature of this paper is that the proposed approach is capable of controlling the stochastic systems with strong interconnected nonlinearities both in the drift and diffusion terms that are the functions of all states of the overall system. Simulation results are used to illustrate the effectiveness of the suggested approach.

Journal ArticleDOI
TL;DR: Since a generalized dissipativity performance index is introduced, several kinds of event-triggered filtering issues, such as H∞ filtering, passive filtering, mixed H ∞ and Passive filtering, (Q, S, R)-dissipative filtering, and L2-L∞ filters, are solved in a unified framework.
Abstract: This paper is concerned with event-triggered generalized dissipativity filtering for a neural network (NN) with a time-varying delay. The signal transmission from the NN to its filter is completed through a communication channel. It is assumed that the network measurement of the NN is sampled periodically. An event-triggered communication scheme is introduced to design a suitable filter such that precious communication resources can be saved significantly while certain filtering performance can be ensured. On the one hand, the event-triggered communication scheme is devised to select only those sampled signals violating a certain threshold to be transmitted, which directly leads to saving of precious communication resources. On the other hand, the filtering error system is modeled as a time-delay system closely dependent on the parameters of the event-triggered scheme. Based on this model, a suitable filter is designed such that certain filtering performance can be ensured, provided that a set of linear matrix inequalities are satisfied. Furthermore, since a generalized dissipativity performance index is introduced, several kinds of event-triggered filtering issues, such as $H_\infty $ filtering, passive filtering, mixed $H_\infty $ and passive filtering, $(Q,S,R)$ -dissipative filtering, and $\mathcal L_{2}$ – $\mathcal L_{\infty }$ filtering, are solved in a unified framework. Finally, two examples are given to illustrate the effectiveness of the proposed method.

Journal ArticleDOI
TL;DR: A generative model for robust tensor factorization in the presence of both missing data and outliers that can discover the groundtruth of CP rank and automatically adapt the sparsity inducing priors to various types of outliers is proposed.
Abstract: We propose a generative model for robust tensor factorization in the presence of both missing data and outliers. The objective is to explicitly infer the underlying low-CANDECOMP/PARAFAC (CP)-rank tensor capturing the global information and a sparse tensor capturing the local information (also considered as outliers), thus providing the robust predictive distribution over missing entries. The low-CP-rank tensor is modeled by multilinear interactions between multiple latent factors on which the column sparsity is enforced by a hierarchical prior, while the sparse tensor is modeled by a hierarchical view of Student- $t$ distribution that associates an individual hyperparameter with each element independently. For model learning, we develop an efficient variational inference under a fully Bayesian treatment, which can effectively prevent the overfitting problem and scales linearly with data size. In contrast to existing related works, our method can perform model selection automatically and implicitly without the need of tuning parameters. More specifically, it can discover the groundtruth of CP rank and automatically adapt the sparsity inducing priors to various types of outliers. In addition, the tradeoff between the low-rank approximation and the sparse representation can be optimized in the sense of maximum model evidence. The extensive experiments and comparisons with many state-of-the-art algorithms on both synthetic and real-world data sets demonstrate the superiorities of our method from several perspectives.

Journal ArticleDOI
TL;DR: Based on Lyapunov functions, Halanay inequality, and linear matrix inequalities, sufficient conditions that depend on the probability distribution of the delay coupling and the impulsive delay were obtained and numerical simulations are used to show the effectiveness of the theoretical results.
Abstract: This paper deals with the exponential synchronization of coupled stochastic memristor-based neural networks with probabilistic time-varying delay coupling and time-varying impulsive delay. There is one probabilistic transmittal delay in the delayed coupling that is translated by a Bernoulli stochastic variable satisfying a conditional probability distribution. The disturbance is described by a Wiener process. Based on Lyapunov functions, Halanay inequality, and linear matrix inequalities, sufficient conditions that depend on the probability distribution of the delay coupling and the impulsive delay were obtained. Numerical simulations are used to show the effectiveness of the theoretical results.

Journal ArticleDOI
TL;DR: Three single-layer neural networks, including one critic and two action networks, are employed to approximate the performance index function, the optimal control law, and the disturbance, respectively, for facilitating the implementation of the ADP method.
Abstract: This paper is concerned with a new data-driven zero-sum neuro-optimal control problem for continuous-time unknown nonlinear systems with disturbance. According to the input–output data of the nonlinear system, an effective recurrent neural network is introduced to reconstruct the dynamics of the nonlinear system. Considering the system disturbance as a control input, a two-player zero-sum optimal control problem is established. Adaptive dynamic programming (ADP) is developed to obtain the optimal control under the worst case of the disturbance. Three single-layer neural networks, including one critic and two action networks, are employed to approximate the performance index function, the optimal control law, and the disturbance, respectively, for facilitating the implementation of the ADP method. Convergence properties of the ADP method are developed to show that the system state will converge to a finite neighborhood of the equilibrium. The weight matrices of the critic and the two action networks are also convergent to finite neighborhoods of their optimal ones. Finally, the simulation results will show the effectiveness of the developed data-driven ADP methods.

Journal ArticleDOI
TL;DR: A new deep learning autoencoder network that learns features that show part-based representation of data that improves the prediction performance of a deep neural network trained by a nonnegativity constraint algorithm.
Abstract: We demonstrate a new deep learning autoencoder network, trained by a nonnegativity constraint algorithm (nonnegativity-constrained autoencoder), that learns features that show part-based representation of data. The learning algorithm is based on constraining negative weights. The performance of the algorithm is assessed based on decomposing data into parts and its prediction performance is tested on three standard image data sets and one text data set. The results indicate that the nonnegativity constraint forces the autoencoder to learn features that amount to a part-based representation of data, while improving sparsity and reconstruction quality in comparison with the traditional sparse autoencoder and nonnegative matrix factorization. It is also shown that this newly acquired representation improves the prediction performance of a deep neural network.

Journal ArticleDOI
TL;DR: The developed impulsive synchronization method is applied to build a spatiotemporal chaotic cryptosystem that can transmit an encrypted image and verify that the proposed image-encrypting cryptos system has the advantages of large key space and high security against some traditional attacks.
Abstract: This paper presents a new impulsive synchronization criterion of two identical reaction–diffusion neural networks with discrete and unbounded distributed delays. The new criterion is established by applying an impulse-time-dependent Lyapunov functional combined with the use of a new type of integral inequality for treating the reaction–diffusion terms. The impulse-time-dependent feature of the proposed Lyapunov functional can capture more hybrid dynamical behaviors of the impulsive reaction–diffusion neural networks than the conventional impulse-time-independent Lyapunov functions/functionals, while the new integral inequality, which is derived from Wirtinger’s inequality, overcomes the conservatism introduced by the integral inequality used in the previous results. Numerical examples demonstrate the effectiveness of the proposed method. Later, the developed impulsive synchronization method is applied to build a spatiotemporal chaotic cryptosystem that can transmit an encrypted image. The experimental results verify that the proposed image-encrypting cryptosystem has the advantages of large key space and high security against some traditional attacks.

Journal ArticleDOI
TL;DR: It is found that the coupled reaction-diffusion neural networks with state coupling under the given linear feedback pinning controllers can realize synchronization when the coupling strength is very large, which is contrary to the coupled Reaction-Diffusion Neural networks with spatial diffusion coupling.
Abstract: Two types of coupled neural networks with reaction–diffusion terms are considered in this paper In the first one, the nodes are coupled through their states In the second one, the nodes are coupled through the spatial diffusion terms For the former, utilizing Lyapunov functional method and pinning control technique, we obtain some sufficient conditions to guarantee that network can realize synchronization In addition, considering that the theoretical coupling strength required for synchronization may be much larger than the needed value, we propose an adaptive strategy to adjust the coupling strength for achieving a suitable value For the latter, we establish a criterion for synchronization using the designed pinning controllers It is found that the coupled reaction–diffusion neural networks with state coupling under the given linear feedback pinning controllers can realize synchronization when the coupling strength is very large, which is contrary to the coupled reaction–diffusion neural networks with spatial diffusion coupling Moreover, a general criterion for ensuring network synchronization is derived by pinning a small fraction of nodes with adaptive feedback controllers Finally, two examples with numerical simulations are provided to demonstrate the effectiveness of the theoretical results

Journal ArticleDOI
TL;DR: In this paper, an integration-enhanced Zhang neural network (IEZNN) model is first proposed and investigated for real-time-varying matrix inversion, and it is proven to have an improved performance and the global exponential convergence property.
Abstract: Matrix inversion often arises in the fields of science and engineering. Many models for matrix inversion usually assume that the solving process is free of noises or that the denoising has been conducted before the computation. However, time is precious for the real-time-varying matrix inversion in practice, and any preprocessing for noise reduction may consume extra time, possibly violating the requirement of real-time computation. Therefore, a new model for time-varying matrix inversion that is able to handle simultaneously the noises is urgently needed. In this paper, an integration-enhanced Zhang neural network (IEZNN) model is first proposed and investigated for real-time-varying matrix inversion. Then, the conventional ZNN model and the gradient neural network model are presented and employed for comparison. In addition, theoretical analyses show that the proposed IEZNN model has the global exponential convergence property. Moreover, in the presence of various kinds of noises, the proposed IEZNN model is proven to have an improved performance. That is, the proposed IEZNN model converges to the theoretical solution of the time-varying matrix inversion problem no matter how large the matrix-form constant noise is, and the residual errors of the proposed IEZNN model can be arbitrarily small for time-varying noises and random noises. Finally, three illustrative simulation examples, including an application to the inverse kinematic motion planning of a robot manipulator, are provided and analyzed to substantiate the efficacy and superiority of the proposed IEZNN model for real-time-varying matrix inversion.

Journal ArticleDOI
TL;DR: This work provides a novel deep image saliency computing (DISC) framework, and utilizes the deep convolutional neural network (CNN) to learn the saliency representation in a progressive manner, built upon two stacked CNNs.
Abstract: Salient object detection increasingly receives attention as an important component or step in several pattern recognition and image processing tasks. Although a variety of powerful saliency models have been intensively proposed, they usually involve heavy feature (or model) engineering based on priors (or assumptions) about the properties of objects and backgrounds. Inspired by the effectiveness of recently developed feature learning, we provide a novel deep image saliency computing (DISC) framework for fine-grained image saliency computing. In particular, we model the image saliency from both the coarse-and fine-level observations, and utilize the deep convolutional neural network (CNN) to learn the saliency representation in a progressive manner. In particular, our saliency model is built upon two stacked CNNs. The first CNN generates a coarse-level saliency map by taking the overall image as the input, roughly identifying saliency regions in the global context. Furthermore, we integrate superpixel-based local context information in the first CNN to refine the coarse-level saliency map. Guided by the coarse saliency map, the second CNN focuses on the local context to produce fine-grained and accurate saliency map while preserving object details. For a testing image, the two CNNs collaboratively conduct the saliency computing in one shot. Our DISC framework is capable of uniformly highlighting the objects of interest from complex background while preserving well object details. Extensive experiments on several standard benchmarks suggest that DISC outperforms other state-of-the-art methods and it also generalizes well across data sets without additional training. The executable version of DISC is available online: http://vision.sysu.edu.cn/projects/DISC .

Journal ArticleDOI
TL;DR: This paper designs a centralized switching consensus protocol such that the finite-time consensus can be realized in a fast speed, and provides two numerical examples to illustrate the superiority of the proposed protocol and design method.
Abstract: In this paper, we study the problem of finite-time consensus of multiagent systems on a fixed directed interaction graph with a new protocol. Existing finite-time consensus protocols can be divided into two types: 1) continuous and 2) discontinuous, which were studied separately in the past. In this paper, we deal with both continuous and discontinuous protocols simultaneously, and design a centralized switching consensus protocol such that the finite-time consensus can be realized in a fast speed. The switching protocol depends on the range of the initial disagreement of the agents, for which we derive an exact bound to indicate at what time a continuous or a discontinuous protocol should be selected to use. Finally, we provide two numerical examples to illustrate the superiority of the proposed protocol and design method.

Journal ArticleDOI
TL;DR: A novel cosaliency detection approach using deep learning models, called intrasaliency prior transfer and deep intersaliency mining, which can extract more intrinsic and general hidden patterns to discover the homogeneity of cosalient objects in terms of some higher level concepts.
Abstract: As an interesting and emerging topic, cosaliency detection aims at simultaneously extracting common salient objects in multiple related images. It differs from the conventional saliency detection paradigm in which saliency detection for each image is determined one by one independently without taking advantage of the homogeneity in the data pool of multiple related images. In this paper, we propose a novel cosaliency detection approach using deep learning models. Two new concepts, called intrasaliency prior transfer and deep intersaliency mining, are introduced and explored in the proposed work. For the intrasaliency prior transfer, we build a stacked denoising autoencoder (SDAE) to learn the saliency prior knowledge from auxiliary annotated data sets and then transfer the learned knowledge to estimate the intrasaliency for each image in cosaliency data sets. For the deep intersaliency mining, we formulate it by using the deep reconstruction residual obtained in the highest hidden layer of a self-trained SDAE. The obtained deep intersaliency can extract more intrinsic and general hidden patterns to discover the homogeneity of cosalient objects in terms of some higher level concepts. Finally, the cosaliency maps are generated by weighted integration of the proposed intrasaliency prior, deep intersaliency, and traditional shallow intersaliency. Comprehensive experiments over diverse publicly available benchmark data sets demonstrate consistent performance gains of the proposed method over the state-of-the-art cosaliency detection methods.

Journal ArticleDOI
TL;DR: A novel compound rank-k projection (CRP) algorithm for bilinear analysis that deals with matrices directly without transforming them into vectors, and it preserves the correlations within the matrix and decreases the computation complexity.
Abstract: In many real-world applications, data are represented by matrices or high-order tensors. Despite the promising performance, the existing 2-D discriminant analysis algorithms employ a single projection model to exploit the discriminant information for projection, making the model less flexible. In this paper, we propose a novel compound rank- $k$ projection (CRP) algorithm for bilinear analysis. The CRP deals with matrices directly without transforming them into vectors, and it, therefore, preserves the correlations within the matrix and decreases the computation complexity. Different from the existing 2-D discriminant analysis algorithms, objective function values of CRP increase monotonically. In addition, the CRP utilizes multiple rank- $k$ projection models to enable a larger search space in which the optimal solution can be found. In this way, the discriminant ability is enhanced. We have tested our approach on five data sets, including UUIm, CVL, Pointing’04, USPS, and Coil20. Experimental results show that the performance of our proposed CRP performs better than other algorithms in terms of classification accuracy.

Journal ArticleDOI
TL;DR: This paper deals with finite-time consensus problems for multiagent systems that are subject to hybrid cooperative and antagonistic interactions by employing the nearest neighbor rule and shows that under the presented protocols, the states of all agents can be guaranteed to reach an agreement in a finite time regarding consensus values that are the same in modulus but may not be theSame in sign.
Abstract: This paper deals with finite-time consensus problems for multiagent systems that are subject to hybrid cooperative and antagonistic interactions. Two consensus protocols are constructed by employing the nearest neighbor rule. It is shown that under the presented protocols, the states of all agents can be guaranteed to reach an agreement in a finite time regarding consensus values that are the same in modulus but may not be the same in sign. In particular, the second protocol can enable all agents to reach a finite-time consensus with a settling time that is not dependent upon the initial states of agents. Simulation results are given to demonstrate the effectiveness and finite-time convergence of the proposed consensus protocols.

Journal ArticleDOI
TL;DR: A sliding-mode control methodology based on the adaptive dynamic programming (ADP) method is designed, so that the closed-loop system with time-varying disturbances is stable and the nearly optimal performance of the sliding- mode dynamics can be guaranteed.
Abstract: This paper is concerned with the problem of integral sliding-mode control for a class of nonlinear systems with input disturbances and unknown nonlinear terms through the adaptive actor–critic (AC) control method. The main objective is to design a sliding-mode control methodology based on the adaptive dynamic programming (ADP) method, so that the closed-loop system with time-varying disturbances is stable and the nearly optimal performance of the sliding-mode dynamics can be guaranteed. In the first step, a neural network (NN)-based observer and a disturbance observer are designed to approximate the unknown nonlinear terms and estimate the input disturbances, respectively. Based on the NN approximations and disturbance estimations, the discontinuous part of the sliding-mode control is constructed to eliminate the effect of the disturbances and attain the expected equivalent sliding-mode dynamics. Then, the ADP method with AC structure is presented to learn the optimal control for the sliding-mode dynamics online. Reconstructed tuning laws are developed to guarantee the stability of the sliding-mode dynamics and the convergence of the weights of critic and actor NNs. Finally, the simulation results are presented to illustrate the effectiveness of the proposed method.