scispace - formally typeset
Search or ask a question

Showing papers in "IEEE Transactions on Parallel and Distributed Systems in 2013"


Journal ArticleDOI
TL;DR: A novel patient-centric framework and a suite of mechanisms for data access control to PHRs stored in semitrusted servers are proposed and a high degree of patient privacy is guaranteed simultaneously by exploiting multiauthority ABE.
Abstract: Personal health record (PHR) is an emerging patient-centric model of health information exchange, which is often outsourced to be stored at a third party, such as cloud providers. However, there have been wide privacy concerns as personal health information could be exposed to those third party servers and to unauthorized parties. To assure the patients' control over access to their own PHRs, it is a promising method to encrypt the PHRs before outsourcing. Yet, issues such as risks of privacy exposure, scalability in key management, flexible access, and efficient user revocation, have remained the most important challenges toward achieving fine-grained, cryptographically enforced data access control. In this paper, we propose a novel patient-centric framework and a suite of mechanisms for data access control to PHRs stored in semitrusted servers. To achieve fine-grained and scalable data access control for PHRs, we leverage attribute-based encryption (ABE) techniques to encrypt each patient's PHR file. Different from previous works in secure data outsourcing, we focus on the multiple data owner scenario, and divide the users in the PHR system into multiple security domains that greatly reduces the key management complexity for owners and users. A high degree of patient privacy is guaranteed simultaneously by exploiting multiauthority ABE. Our scheme also enables dynamic modification of access policies or file attributes, supports efficient on-demand user/attribute revocation and break-glass access under emergency scenarios. Extensive analytical and experimental results are presented which show the security, scalability, and efficiency of our proposed scheme.

1,057 citations


Journal ArticleDOI
TL;DR: This paper presents a system that uses virtualization technology to allocate data center resources dynamically based on application demands and support green computing by optimizing the number of servers in use and develops a set of heuristics that prevent overload in the system effectively while saving energy used.
Abstract: Cloud computing allows business customers to scale up and down their resource usage based on needs. Many of the touted gains in the cloud model come from resource multiplexing through virtualization technology. In this paper, we present a system that uses virtualization technology to allocate data center resources dynamically based on application demands and support green computing by optimizing the number of servers in use. We introduce the concept of "skewness” to measure the unevenness in the multidimensional resource utilization of a server. By minimizing skewness, we can combine different types of workloads nicely and improve the overall utilization of server resources. We develop a set of heuristics that prevent overload in the system effectively while saving energy used. Trace driven simulation and experiment results demonstrate that our algorithm achieves good performance.

859 citations


Journal ArticleDOI
TL;DR: This paper designs an auditing framework for cloud storage systems and proposes an efficient and privacy-preserving auditing protocol, which is efficient and provably secure in the random oracle model and extends the protocol to support the data dynamic operations.
Abstract: In cloud computing, data owners host their data on cloud servers and users (data consumers) can access the data from cloud servers. Due to the data outsourcing, however, this new paradigm of data hosting service also introduces new security challenges, which requires an independent auditing service to check the data integrity in the cloud. Some existing remote integrity checking methods can only serve for static archive data and, thus, cannot be applied to the auditing service since the data in the cloud can be dynamically updated. Thus, an efficient and secure dynamic auditing protocol is desired to convince data owners that the data are correctly stored in the cloud. In this paper, we first design an auditing framework for cloud storage systems and propose an efficient and privacy-preserving auditing protocol. Then, we extend our auditing protocol to support the data dynamic operations, which is efficient and provably secure in the random oracle model. We further extend our auditing protocol to support batch auditing for both multiple owners and multiple clouds, without using any trusted organizer. The analysis and simulation results show that our proposed auditing protocols are secure and efficient, especially it reduce the computation cost of the auditor.

572 citations


Journal ArticleDOI
TL;DR: This work proposes a novel approach that for any known stationary workload and a given state configuration optimally solves the problem of host overload detection by maximizing the mean intermigration time under the specified QoS goal based on a Markov chain model.
Abstract: Dynamic consolidation of virtual machines (VMs) is an effective way to improve the utilization of resources and energy efficiency in cloud data centers. Determining when it is best to reallocate VMs from an overloaded host is an aspect of dynamic VM consolidation that directly influences the resource utilization and quality of service (QoS) delivered by the system. The influence on the QoS is explained by the fact that server overloads cause resource shortages and performance degradation of applications. Current solutions to the problem of host overload detection are generally heuristic based, or rely on statistical analysis of historical data. The limitations of these approaches are that they lead to suboptimal results and do not allow explicit specification of a QoS goal. We propose a novel approach that for any known stationary workload and a given state configuration optimally solves the problem of host overload detection by maximizing the mean intermigration time under the specified QoS goal based on a Markov chain model. We heuristically adapt the algorithm to handle unknown nonstationary workloads using the Multisize Sliding Window workload estimation technique. Through simulations with workload traces from more than a thousand PlanetLab VMs, we show that our approach outperforms the best benchmark algorithm and provides approximately 88 percent of the performance of the optimal offline algorithm.

458 citations


Journal ArticleDOI
TL;DR: The frequency diversity of the subcarriers in orthogonal frequency division multiplexing systems is explored and a novel approach called FILA is proposed, which leverages the channel state information to build a propagation model and a fingerprinting system at the receiver.
Abstract: Indoor positioning systems have received increasing attention for supporting location-based services in indoor environments. WiFi-based indoor localization has been attractive due to its open access and low cost properties. However, the distance estimation based on received signal strength indicator (RSSI) is easily affected by the temporal and spatial variance due to the multipath effect, which contributes to most of the estimation errors in current systems. In this work, we analyze this effect across the physical layer and account for the undesirable RSSI readings being reported. We explore the frequency diversity of the subcarriers in orthogonal frequency division multiplexing systems and propose a novel approach called FILA, which leverages the channel state information (CSI) to build a propagation model and a fingerprinting system at the receiver. We implement the FILA system on commercial 802.11 NICs, and then evaluate its performance in different typical indoor scenarios. The experimental results show that the accuracy and latency of distance calculation can be significantly enhanced by using CSI. Moreover, FILA can significantly improve the localization accuracy compared with the corresponding RSSI approach.

438 citations


Journal ArticleDOI
TL;DR: This work designs WILL, an indoor localization approach based on off-the-shelf WiFi infrastructure and mobile phones and shows that WILL achieves competitive performance comparing with traditional approaches.
Abstract: Indoor localization is of great importance for a range of pervasive applications, attracting many research efforts in the past two decades. Most radio-based solutions require a process of site survey, in which radio signatures are collected and stored for further comparison and matching. Site survey involves intensive costs on manpower and time. In this work, we study unexploited RF signal characteristics and leverage user motions to construct radio floor plan that is previously obtained by site survey. On this basis, we design WILL, an indoor localization approach based on off-the-shelf WiFi infrastructure and mobile phones. WILL is deployed in a real building covering over 1600 m2, and its deployment is easy and rapid since site survey is no longer needed. The experiment results show that WILL achieves competitive performance comparing with traditional approaches.

421 citations


Journal ArticleDOI
TL;DR: A novel nonparametric approach for traffic classification is proposed which can improve the classification performance effectively by incorporating correlated information into the classification process and its performance benefit from both theoretical and empirical perspectives.
Abstract: Traffic classification has wide applications in network management, from security monitoring to quality of service measurements. Recent research tends to apply machine learning techniques to flow statistical feature based classification methods. The nearest neighbor (NN)-based method has exhibited superior classification performance. It also has several important advantages, such as no requirements of training procedure, no risk of overfitting of parameters, and naturally being able to handle a huge number of classes. However, the performance of NN classifier can be severely affected if the size of training data is small. In this paper, we propose a novel nonparametric approach for traffic classification, which can improve the classification performance effectively by incorporating correlated information into the classification process. We analyze the new classification approach and its performance benefit from both theoretical and empirical perspectives. A large number of experiments are carried out on two real-world traffic data sets to validate the proposed approach. The results show the traffic classification performance can be improved significantly even under the extreme difficult circumstance of very few training samples.

318 citations


Journal ArticleDOI
TL;DR: This paper proposes a secure multi-owner data sharing scheme, named Mona, for dynamic groups in the cloud, leveraging group signature and dynamic broadcast encryption techniques, so that any cloud user can anonymously share data with others.
Abstract: With the character of low maintenance, cloud computing provides an economical and efficient solution for sharing group resource among cloud users. Unfortunately, sharing data in a multi-owner manner while preserving data and identity privacy from an untrusted cloud is still a challenging issue, due to the frequent change of the membership. In this paper, we propose a secure multi-owner data sharing scheme, named Mona, for dynamic groups in the cloud. By leveraging group signature and dynamic broadcast encryption techniques, any cloud user can anonymously share data with others. Meanwhile, the storage overhead and encryption computation cost of our scheme are independent with the number of revoked users. In addition, we analyze the security of our scheme with rigorous proofs, and demonstrate the efficiency of our scheme in experiments.

302 citations


Journal ArticleDOI
TL;DR: This paper proposes a QoS ranking prediction framework for cloud services by taking advantage of the past service usage experiences of other consumers, and shows that the experimental results show that the approaches outperform other competing approaches.
Abstract: Cloud computing is becoming popular. Building high-quality cloud applications is a critical research problem. QoS rankings provide valuable information for making optimal cloud service selection from a set of functionally equivalent service candidates. To obtain QoS values, real-world invocations on the service candidates are usually required. To avoid the time-consuming and expensive real-world service invocations, this paper proposes a QoS ranking prediction framework for cloud services by taking advantage of the past service usage experiences of other consumers. Our proposed framework requires no additional invocations of cloud services when making QoS ranking prediction. Two personalized QoS ranking prediction approaches are proposed to predict the QoS rankings directly. Comprehensive experiments are conducted employing real-world QoS data, including 300 distributed users and 500 real-world web services all over the world. The experimental results show that our approaches outperform other competing approaches.

292 citations


Journal ArticleDOI
TL;DR: It is suggested that an event-based routing structure can be trained and thus better adapted to the wild environment when building a large-scale sensor network.
Abstract: Sensor networks are deemed suitable for large-scale deployments in the wild for a variety of applications. In spite of the remarkable efforts the community put to build the sensor systems, an essential question still remains unclear at the system level, motivating us to explore the answer from a point of real-world deployment view. Does the wireless sensor network really scale? We present findings from a large-scale operating sensor network system, GreenOrbs, with up to 330 nodes deployed in the forest. We instrument such an operating network throughout the protocol stack and present observations across layers in the network. Based on our findings from the system measurement, we propose and make initial efforts to validate three conjectures that give potential guidelines for future designs of large-scale sensor networks. 1) A small portion of nodes bottlenecks the entire network, and most of the existing network indicators may not accurately capture them. 2) The network dynamics mainly come from the inherent concurrency of network operations instead of environment changes. 3) The environment, although the dynamics are not as significant as we assumed, has an unpredictable impact on the sensor network. We suggest that an event-based routing structure can be trained and thus better adapted to the wild environment when building a large-scale sensor network.

255 citations


Journal ArticleDOI
TL;DR: An efficient user-centric privacy access control in SPOC framework is introduced, which is based on an attribute-based access control and a new privacy-preserving scalar product computation (PPSPC) technique, and allows a medical user to decide who can participate in the opportunistic computing to assist in processing his overwhelming PHI data.
Abstract: With the pervasiveness of smart phones and the advance of wireless body sensor networks (BSNs), mobile Healthcare (m-Healthcare), which extends the operation of Healthcare provider into a pervasive environment for better health monitoring, has attracted considerable interest recently. However, the flourish of m-Healthcare still faces many challenges including information security and privacy preservation. In this paper, we propose a secure and privacy-preserving opportunistic computing framework, called SPOC, for m-Healthcare emergency. With SPOC, smart phone resources including computing power and energy can be opportunistically gathered to process the computing-intensive personal health information (PHI) during m-Healthcare emergency with minimal privacy disclosure. In specific, to leverage the PHI privacy disclosure and the high reliability of PHI process and transmission in m-Healthcare emergency, we introduce an efficient user-centric privacy access control in SPOC framework, which is based on an attribute-based access control and a new privacy-preserving scalar product computation (PPSPC) technique, and allows a medical user to decide who can participate in the opportunistic computing to assist in processing his overwhelming PHI data. Detailed security analysis shows that the proposed SPOC framework can efficiently achieve user-centric privacy access control in m-Healthcare emergency. In addition, performance evaluations via extensive simulations demonstrate the SPOC's effectiveness in term of providing high-reliable-PHI process and transmission while minimizing the privacy disclosure during m-Healthcare emergency.

Journal ArticleDOI
TL;DR: The dynamic aspects of the coverage of a mobile sensor network resulting from continuous movement of sensors, as well as the time durations that a location is covered and uncovered, are studied.
Abstract: We study the dynamic aspects of the coverage of a mobile sensor network resulting from continuous movement of sensors. As sensors move around, initially uncovered locations may be covered at a later time, and intruders that might never be detected in a stationary sensor network can now be detected by moving sensors. However, this improvement in coverage is achieved at the cost that a location is covered only part of the time, alternating between covered and not covered. We characterize area coverage at specific time instants and during time intervals, as well as the time durations that a location is covered and uncovered. We further consider the time it takes to detect a randomly located intruder and prove that the detection time is exponentially distributed with parameter 2λrvs where λ represents the sensor density, r represents the sensor's sensing range, and vs denotes the average sensor speed. For mobile intruders, we take a game theoretic approach and derive optimal mobility strategies for both sensors and intruders. We prove that the optimal sensor strategy is to choose their directions uniformly at random between (0, 2π). The optimal intruder strategy is to remain stationary. This solution represents a mixed strategy which is a Nash equilibrium of the zero-sum game between mobile sensors and intruders.

Journal ArticleDOI
TL;DR: The definition of customer satisfaction in economics is referred to and a formula for measuringCustomer satisfaction in cloud computing is developed and an analysis is given in detail on how the customer satisfaction affects the profit.
Abstract: As cloud computing becomes more and more popular, understanding the economics of cloud computing becomes critically important. To maximize the profit, a service provider should understand both service charges and business costs, and how they are determined by the characteristics of the applications and the configuration of a multiserver system. The problem of optimal multiserver configuration for profit maximization in a cloud computing environment is studied. Our pricing model takes such factors into considerations as the amount of a service, the workload of an application environment, the configuration of a multiserver system, the service-level agreement, the satisfaction of a consumer, the quality of a service, the penalty of a low-quality service, the cost of renting, the cost of energy consumption, and a service provider's margin and profit. Our approach is to treat a multiserver system as an M/M/m queuing model, such that our optimization problem can be formulated and solved analytically. Two server speed and power consumption models are considered, namely, the idle-speed model and the constant-speed model. The probability density function of the waiting time of a newly arrived service request is derived. The expected service charge to a service request is calculated. The expected net business gain in one unit of time is obtained. Numerical calculations of the optimal server size and the optimal server speed are demonstrated.

Journal ArticleDOI
TL;DR: How the energy-cognizant scheduler's role has been extended beyond simple energy minimization to also include related issues like the avoidance of negative thermal effects as well as addressing asymmetric multicore architectures is explored.
Abstract: Execution time is no longer the only metric by which computational systems are judged. In fact, explicitly sacrificing raw performance in exchange for energy savings is becoming a common trend in environments ranging from large server farms attempting to minimize cooling costs to mobile devices trying to prolong battery life. Hardware designers, well aware of these trends, include capabilities like DVFS (to throttle core frequency) into almost all modern systems. However, hardware capabilities on their own are insufficient and must be paired with other logic to decide if, when, and by how much to apply energy-minimizing techniques while still meeting performance goals. One obvious choice is to place this logic into the OS scheduler. This choice is particularly attractive due to the relative simplicity, low cost, and low risk associated with modifying only the scheduler part of the OS. Herein we survey the vast field of research on energy-cognizant schedulers. We discuss scheduling techniques to perform energy-efficient computation. We further explore how the energy-cognizant scheduler's role has been extended beyond simple energy minimization to also include related issues like the avoidance of negative thermal effects as well as addressing asymmetric multicore architectures.

Journal ArticleDOI
TL;DR: Spatial information, a physical property associated with each node, hard to falsify, and not reliant on cryptography, is proposed as the basis for detecting spoofing attacks; determining the number of attackers when multiple adversaries masquerading as the same node identity; and localizing multiple adversaries.
Abstract: Wireless spoofing attacks are easy to launch and can significantly impact the performance of networks. Although the identity of a node can be verified through cryptographic authentication, conventional security approaches are not always desirable because of their overhead requirements. In this paper, we propose to use spatial information, a physical property associated with each node, hard to falsify, and not reliant on cryptography, as the basis for 1) detecting spoofing attacks; 2) determining the number of attackers when multiple adversaries masquerading as the same node identity; and 3) localizing multiple adversaries. We propose to use the spatial correlation of received signal strength (RSS) inherited from wireless nodes to detect the spoofing attacks. We then formulate the problem of determining the number of attackers as a multiclass detection problem. Cluster-based mechanisms are developed to determine the number of attackers. When the training data are available, we explore using the Support Vector Machines (SVM) method to further improve the accuracy of determining the number of attackers. In addition, we developed an integrated detection and localization system that can localize the positions of multiple attackers. We evaluated our techniques through two testbeds using both an 802.11 (WiFi) network and an 802.15.4 (ZigBee) network in two real office buildings. Our experimental results show that our proposed methods can achieve over 90 percent Hit Rate and Precision when determining the number of attackers. Our localization results using a representative set of algorithms provide strong evidence of high accuracy of localizing multiple adversaries.

Journal ArticleDOI
TL;DR: This work is the first to explore the problem of electricity cost saving using energy storage in multiple data centers by considering both the spatial and temporal variations in wholesale electricity prices and workload arrival processes.
Abstract: Electricity expenditure comprises a significant fraction of the total operating cost in data centers. Hence, cloud service providers are required to reduce electricity cost as much as possible. In this paper, we consider utilizing existing energy storage capabilities in data centers to reduce electricity cost under wholesale electricity markets, where the electricity price exhibits both temporal and spatial variations. A stochastic program is formulated by integrating the center-level load balancing, the server-level configuration, and the battery management while at the same time guaranteeing the quality-of-service experience by end users. We use the Lyapunov optimization technique to design an online algorithm that achieves an explicit tradeoff between cost saving and energy storage capacity. We demonstrate the effectiveness of our proposed algorithm through extensive numerical evaluations based on real-world workload and electricity price data sets. As far as we know, our work is the first to explore the problem of electricity cost saving using energy storage in multiple data centers by considering both the spatial and temporal variations in wholesale electricity prices and workload arrival processes.

Journal ArticleDOI
TL;DR: New distributed algorithms for the computation of the k- coreness of a network, a process also known as k-core decomposition, are proposed and an exhaustive experimental analysis on real-world data sets is provided.
Abstract: Several novel metrics have been proposed in recent literature in order to study the relative importance of nodes in complex networks. Among those, k-coreness has found a number of applications in areas as diverse as sociology, proteinomics, graph visualization, and distributed system analysis and design. This paper proposes new distributed algorithms for the computation of the k-coreness of a network, a process also known as k-core decomposition. This technique 1) allows the decomposition, over a set of connected machines, of very large graphs, when size does not allow storing and processing them on a single host, and 2) enables the runtime computation of k-cores in “live” distributed systems. Lower bounds on the algorithms complexity are given, and an exhaustive experimental analysis on real-world data sets is provided.

Journal ArticleDOI
TL;DR: This paper presents a secure outsourcing mechanism for solving large-scale systems of linear equations (LE) in cloud via a completely different approach, which is much easier to implement in practice and only demands relatively simpler matrix-vector operations.
Abstract: Cloud computing economically enables customers with limited computational resources to outsource large-scale computations to the cloud. However, how to protect customers' confidential data involved in the computations then becomes a major security concern. In this paper, we present a secure outsourcing mechanism for solving large-scale systems of linear equations (LE) in cloud. Because applying traditional approaches like Gaussian elimination or LU decomposition (aka. direct method) to such large-scale LEs would be prohibitively expensive, we build the secure LE outsourcing mechanism via a completely different approach—iterative method, which is much easier to implement in practice and only demands relatively simpler matrix-vector operations. Specifically, our mechanism enables a customer to securely harness the cloud for iteratively finding successive approximations to the LE solution, while keeping both the sensitive input and output of the computation private. For robust cheating detection, we further explore the algebraic property of matrix-vector operations and propose an efficient result verification mechanism, which allows the customer to verify all answers received from previous iterative approximations in one batch with high probability. Thorough security analysis and prototype experiments on Amazon EC2 demonstrate the validity and practicality of our proposed design.

Journal ArticleDOI
TL;DR: In this paper, a fully distributed load rebalancing algorithm is presented to cope with the load imbalance problem and is compared against a centralized approach in a production system and a competing distributed solution presented in the literature.
Abstract: Distributed file systems are key building blocks for cloud computing applications based on the MapReduce programming paradigm. In such file systems, nodes simultaneously serve computing and storage functions; a file is partitioned into a number of chunks allocated in distinct nodes so that MapReduce tasks can be performed in parallel over the nodes. However, in a cloud computing environment, failure is the norm, and nodes may be upgraded, replaced, and added in the system. Files can also be dynamically created, deleted, and appended. This results in load imbalance in a distributed file system; that is, the file chunks are not distributed as uniformly as possible among the nodes. Emerging distributed file systems in production systems strongly depend on a central node for chunk reallocation. This dependence is clearly inadequate in a large-scale, failure-prone environment because the central load balancer is put under considerable workload that is linearly scaled with the system size, and may thus become the performance bottleneck and the single point of failure. In this paper, a fully distributed load rebalancing algorithm is presented to cope with the load imbalance problem. Our algorithm is compared against a centralized approach in a production system and a competing distributed solution presented in the literature. The simulation results indicate that our proposal is comparable with the existing centralized approach and considerably outperforms the prior distributed algorithm in terms of load imbalance factor, movement cost, and algorithmic overhead. The performance of our proposal implemented in the Hadoop distributed file system is further investigated in a cluster environment.

Journal ArticleDOI
TL;DR: A novel upper bound privacy leakage constraint-based approach to identify which intermediate data sets need to be encrypted and which do not, so that privacy-preserving cost can be saved while the privacy requirements of data holders can still be satisfied.
Abstract: Cloud computing provides massive computation power and storage capacity which enable users to deploy computation and data-intensive applications without infrastructure investment. Along the processing of such applications, a large volume of intermediate data sets will be generated, and often stored to save the cost of recomputing them. However, preserving the privacy of intermediate data sets becomes a challenging problem because adversaries may recover privacy-sensitive information by analyzing multiple intermediate data sets. Encrypting ALL data sets in cloud is widely adopted in existing approaches to address this challenge. But we argue that encrypting all intermediate data sets are neither efficient nor cost-effective because it is very time consuming and costly for data-intensive applications to en/decrypt data sets frequently while performing any operation on them. In this paper, we propose a novel upper bound privacy leakage constraint-based approach to identify which intermediate data sets need to be encrypted and which do not, so that privacy-preserving cost can be saved while the privacy requirements of data holders can still be satisfied. Evaluation results demonstrate that the privacy-preserving cost of intermediate data sets can be significantly reduced with our approach over existing ones where all data sets are encrypted.

Journal ArticleDOI
TL;DR: A pricing model and a truthful mechanism for scheduling single tasks considering two objectives: monetary cost and completion time are introduced and extended for dynamic scheduling of scientific workflows.
Abstract: The ultimate goal of cloud providers by providing resources is increasing their revenues. This goal leads to a selfish behavior that negatively affects the users of a commercial multicloud environment. In this paper, we introduce a pricing model and a truthful mechanism for scheduling single tasks considering two objectives: monetary cost and completion time. With respect to the social cost of the mechanism, i.e., minimizing the completion time and monetary cost, we extend the mechanism for dynamic scheduling of scientific workflows. We theoretically analyze the truthfulness and the efficiency of the mechanism and present extensive experimental results showing significant impact of the selfish behavior of the cloud providers on the efficiency of the whole system. The experiments conducted using real-world and synthetic workflow applications demonstrate that our solutions dominate in most cases the Pareto-optimal solutions estimated by two classical multiobjective evolutionary algorithms.

Journal ArticleDOI
TL;DR: A Markov chain is proposed to model these relations by simple expressions without giving up the accuracy and derive a distributed adaptive algorithm for minimizing the power consumption while guaranteeing a given successful packet reception probability and delay constraints in the packet transmission.
Abstract: Distributed processing through ad hoc and sensor networks is having a major impact on scale and applications of computing. The creation of new cyber-physical services based on wireless sensor devices relies heavily on how well communication protocols can be adapted and optimized to meet quality constraints under limited energy resources. The IEEE 802.15.4 medium access control protocol for wireless sensor networks can support energy efficient, reliable, and timely packet transmission by a parallel and distributed tuning of the medium access control parameters. Such a tuning is difficult, because simple and accurate models of the influence of these parameters on the probability of successful packet transmission, packet delay, and energy consumption are not available. Moreover, it is not clear how to adapt the parameters to the changes of the network and traffic regimes by algorithms that can run on resource-constrained devices. In this paper, a Markov chain is proposed to model these relations by simple expressions without giving up the accuracy. In contrast to previous work, the presence of limited number of retransmissions, acknowledgments, unsaturated traffic, packet size, and packet copying delay due to hardware limitations is accounted for. The model is then used to derive a distributed adaptive algorithm for minimizing the power consumption while guaranteeing a given successful packet reception probability and delay constraints in the packet transmission. The algorithm does not require any modification of the IEEE 802.15.4 medium access control and can be easily implemented on network devices. The algorithm has been experimentally implemented and evaluated on a testbed with off-the-shelf wireless sensor devices. Experimental results show that the analysis is accurate, that the proposed algorithm satisfies reliability and delay constraints, and that the approach reduces the energy consumption of the network under both stationary and transient conditions. Specifically, even if the number of devices and traffic configuration change sharply, the proposed parallel and distributed algorithm allows the system to operate close to its optimal state by estimating the busy channel and channel access probabilities. Furthermore, results indicate that the protocol reacts promptly to errors in the estimation of the number of devices and in the traffic load that can appear due to device mobility. It is also shown that the effect of imperfect channel and carrier sensing on system performance heavily depends on the traffic load and limited range of the protocol parameters.

Journal ArticleDOI
Xiwang Yang, Yang Guo1, Yong Liu
TL;DR: It is shown that the Bayesian-inference based recommendation provides personalized recommendations as accurate as the traditional CF approaches, and allows the flexible trade-offs between recommendation quality and recommendation quantity.
Abstract: In this paper, we propose a Bayesian-inference-based recommendation system for online social networks. In our system, users share their content ratings with friends. The rating similarity between a pair of friends is measured by a set of conditional probabilities derived from their mutual rating history. A user propagates a content rating query along the social network to his direct and indirect friends. Based on the query responses, a Bayesian network is constructed to infer the rating of the querying user. We develop distributed protocols that can be easily implemented in online social networks. We further propose to use Prior distribution to cope with cold start and rating sparseness. The proposed algorithm is evaluated using two different online rating data sets of real users. We show that the proposed Bayesian-inference-based recommendation is better than the existing trust-based recommendations and is comparable to Collaborative Filtering (CF) recommendation. It allows the flexible tradeoffs between recommendation quality and recommendation quantity. We further show that informative Prior distribution is indeed helpful to overcome cold start and rating sparseness.

Journal ArticleDOI
TL;DR: Simulation results verify that the proposed coloring algorithm effectively overcomes inter-WBAN interference and invariably supports higher system throughput in various mobile WBAN scenarios compared to conventional colorings.
Abstract: In this study, random incomplete coloring (RIC) with low time-complexity and high spatial reuse is proposed to overcome in-between wireless-body-area-networks (WBAN) interference, which can cause serious throughput degradation and energy waste. Interference-avoidance scheduling of wireless networks can be modeled as a problem of graph coloring. For instance, high spatial-reuse scheduling for a dense sensor network is mapped to high spatial-reuse coloring; fast convergence scheduling for a mobile ad hoc network (MANET) is mapped to low time-complexity coloring. However, for a dense and mobile WBAN, inter-WBAN scheduling (IWS) should simultaneously satisfy both of the following requirements: 1) high spatial-reuse and 2) fast convergence, which are tradeoffs in conventional coloring. By relaxing the coloring rule, the proposed distributed coloring algorithm RIC avoids this tradeoff and satisfies both requirements. Simulation results verify that the proposed coloring algorithm effectively overcomes inter-WBAN interference and invariably supports higher system throughput in various mobile WBAN scenarios compared to conventional colorings.

Journal ArticleDOI
TL;DR: A scalable, fully distributed, energy-aware thermal management solution for single-chip multicore platforms is presented and model uncertainty is addressed by supporting learning of the thermal model with a novel distributed self-calibration approach that matches well the controller architecture.
Abstract: As result of technology scaling, single-chip multicore power density increases and its spatial and temporal workload variation leads to temperature hot-spots, which may cause nonuniform ageing and accelerated chip failure. These critical issues can be tackled by closed-loop thermal and reliability management policies. Model predictive controllers (MPC) outperform classic feedback controllers since they are capable of minimizing performance loss while enforcing safe working temperature. Unfortunately, MPC controllers rely on a priori knowledge of thermal models and their complexity exponentially grows with the number of controlled cores. In this paper, we present a scalable, fully distributed, energy-aware thermal management solution for single-chip multicore platforms. The model-predictive controller complexity is drastically reduced by splitting it in a set of simpler interacting controllers, each one allocated to a core in the system. Locally, each node selects the optimal frequency to meet temperature constraints while minimizing the performance penalty and system energy. Comparable performance with state-of-the-art MPC controllers is achieved by letting controllers exchange a limited amount of information at runtime on a neighborhood basis. In addition, we address model uncertainty by supporting learning of the thermal model with a novel distributed self-calibration approach that matches well the controller architecture.

Journal ArticleDOI
TL;DR: This work employs a semi-Markov process to model user mobility based on the geocommunity structure of the network, and develops different route algorithms to cater to the superuser that wants to either minimize total duration or maximize dissemination ratio.
Abstract: In this paper, we consider the issue of data broadcasting in mobile social networks (MSNets). The objective is to broadcast data from a superuser to other users in the network. There are two main challenges under this paradigm, namely 1) how to represent and characterize user mobility in realistic MSNets; 2) given the knowledge of regular users' movements, how to design an efficient superuser route to broadcast data actively. We first explore several realistic data sets to reveal both geographic and social regularities of human mobility, and further propose the concepts of geocommunity and geocentrality into MSNet analysis. Then, we employ a semi-Markov process to model user mobility based on the geocommunity structure of the network. Correspondingly, the geocentrality indicating the “dynamic user density” of each geocommunity can be derived from the semi-Markov model. Finally, considering the geocentrality information, we provide different route algorithms to cater to the superuser that wants to either minimize total duration or maximize dissemination ratio. To the best of our knowledge, this work is the first to study data broadcasting in a realistic MSNet setting. Extensive trace-driven simulations show that our approach consistently outperforms other existing superuser route design algorithms in terms of dissemination ratio and energy efficiency.

Journal ArticleDOI
TL;DR: A new kNN-based AD scheme based on hypergrid intuition is proposed for WSN applications to overcome the lazy-learning problem and is able to work successfully in any environment without human interventions.
Abstract: Online anomaly detection (AD) is an important technique for monitoring wireless sensor networks (WSNs), which protects WSNs from cyberattacks and random faults. As a scalable and parameter-free unsupervised AD technique, k-nearest neighbor (kNN) algorithm has attracted a lot of attention for its applications in computer networks and WSNs. However, the nature of lazy-learning makes the kNN-based AD schemes difficult to be used in an online manner, especially when communication cost is constrained. In this paper, a new kNN-based AD scheme based on hypergrid intuition is proposed for WSN applications to overcome the lazy-learning problem. Through redefining anomaly from a hypersphere detection region (DR) to a hypercube DR, the computational complexity is reduced significantly. At the same time, an attached coefficient is used to convert a hypergrid structure into a positive coordinate space in order to retain the redundancy for online update and tailor for bit operation. In addition, distributed computing is taken into account, and position of the hypercube is encoded by a few bits only using the bit operation. As a result, the new scheme is able to work successfully in any environment without human interventions. Finally, the experiments with a real WSN data set demonstrate that the proposed scheme is effective and robust.

Journal ArticleDOI
TL;DR: This paper employs both the analytical and simulation modeling to addresses the complexity of cloud computing systems to obtain important performance metrics such as task blocking probability and total waiting time incurred on user requests.
Abstract: Accurate performance evaluation of cloud computing resources is a necessary prerequisite for ensuring that quality of service parameters remain within agreed limits. In this paper, we employ both the analytical and simulation modeling to addresses the complexity of cloud computing systems. Analytical model is comprised of distinct functional submodels, the results of which are combined in an iterative manner to obtain the solution with required accuracy. Our models incorporate the important features of cloud centers such as batch arrival of user requests, resource virtualization, and realistic servicing steps, to obtain important performance metrics such as task blocking probability and total waiting time incurred on user requests. Also, our results reveal important insights for capacity planning to control delay of servicing users requests.

Journal ArticleDOI
TL;DR: A novel hierarchical network-on-chip (H-NoC) architecture for SNN hardware is presented, which aims to address the scalability issue by creating a modular array of clusters of neurons using a hierarchical structure of low and high-level routers.
Abstract: Spiking neural networks (SNNs) attempt to emulate information processing in the mammalian brain based on massively parallel arrays of neurons that communicate via spike events. SNNs offer the possibility to implement embedded neuromorphic circuits, with high parallelism and low power consumption compared to the traditional von Neumann computer paradigms. Nevertheless, the lack of modularity and poor connectivity shown by traditional neuron interconnect implementations based on shared bus topologies is prohibiting scalable hardware implementations of SNNs. This paper presents a novel hierarchical network-on-chip (H-NoC) architecture for SNN hardware, which aims to address the scalability issue by creating a modular array of clusters of neurons using a hierarchical structure of low and high-level routers. The proposed H-NoC architecture incorporates a spike traffic compression technique to exploit SNN traffic patterns and locality between neurons, thus reducing traffic overhead and improving throughput on the network. In addition, adaptive routing capabilities between clusters balance local and global traffic loads to sustain throughput under bursting activity. Analytical results show the scalability of the proposed H-NoC approach under different scenarios, while simulation and synthesis analysis using 65-nm CMOS technology demonstrate high-throughput, low-cost area, and power consumption per cluster, respectively.

Journal ArticleDOI
TL;DR: A novel analytical model is proposed that implements a spatial-temporal synchronization process, which is able to capture the temporal dynamics of social network worms and overcomes the computational challenge of spatial dependence and provides a stronger approximation to the propagation dynamics.
Abstract: Social network worms, such as email worms and facebook worms, pose a critical security threat to the Internet. Modeling their propagation dynamics is essential to predict their potential damages and develop countermeasures. Although several analytical models have been proposed for modeling propagation dynamics of social network worms, there are two critical problems unsolved: temporal dynamics and spatial dependence. First, previous models have not taken into account the different time periods of Internet users checking emails or social messages, namely, temporal dynamics. Second, the problem of spatial dependence results from the improper assumption that the states of neighboring nodes are independent. These two problems seriously affect the accuracy of the previous analytical models. To address these two problems, we propose a novel analytical model. This model implements a spatial-temporal synchronization process, which is able to capture the temporal dynamics. Additionally, we find the essence of spatial dependence is the spreading cycles. By eliminating the effect of these cycles, our model overcomes the computational challenge of spatial dependence and provides a stronger approximation to the propagation dynamics. To evaluate our susceptible-infectious-immunized (SII) model, we conduct both theoretical analysis and extensive simulations. Compared with previous epidemic models and the spatial-temporal model, the experimental results show our SII model achieves a greater accuracy. We also compare our model with the susceptible-infectious-susceptible and susceptible-infectious-recovered models. The results show that our model is more suitable for modeling the propagation of social network worms.