JournalISSN: 0885-8993

# IEEE Transactions on Power Electronics

Institute of Electrical and Electronics Engineers
About: IEEE Transactions on Power Electronics is an academic journal. The journal publishes majorly in the area(s): Capacitor & Voltage. It has an ISSN identifier of 0885-8993. Over the lifetime, 12809 publications have been published receiving 675407 citations.
Topics: Capacitor

##### Papers
More filters
Journal ArticleDOI

[...]

TL;DR: In this article, the authors proposed a method of modeling and simulation of photovoltaic arrays by adjusting the curve at three points: open circuit, maximum power, and short circuit.
Abstract: This paper proposes a method of modeling and simulation of photovoltaic arrays. The main objective is to find the parameters of the nonlinear I-V equation by adjusting the curve at three points: open circuit, maximum power, and short circuit. Given these three points, which are provided by all commercial array data sheets, the method finds the best I-V equation for the single-diode photovoltaic (PV) model including the effect of the series and parallel resistances, and warranties that the maximum power of the model matches with the maximum power of the real array. With the parameters of the adjusted I-V equation, one can build a PV circuit model with any circuit simulator by using basic math blocks. The modeling method and the proposed circuit model are useful for power electronics designers who need a simple, fast, accurate, and easy-to-use modeling method for using in simulations of PV systems. In the first pages, the reader will find a tutorial on PV devices and will understand the parameters that compose the single-diode PV model. The modeling method is then introduced and presented in details. The model is validated with experimental data of commercial PV arrays.

3,406 citations

Journal ArticleDOI

[...]

TL;DR: In this article, the perturb and observe (PO) algorithm is used in photovoltaic (PV) systems to maximize the PV array output power by tracking continuously the maximum power point (MPP) which depends on panels temperature and on irradiance conditions.
Abstract: Maximum power point tracking (MPPT) techniques are used in photovoltaic (PV) systems to maximize the PV array output power by tracking continuously the maximum power point (MPP) which depends on panels temperature and on irradiance conditions. The issue of MPPT has been addressed in different ways in the literature but, especially for low-cost implementations, the perturb and observe (PO moreover, it is well known that the P&O algorithm can be confused during those time intervals characterized by rapidly changing atmospheric conditions. In this paper it is shown that, in order to limit the negative effects associated to the above drawbacks, the P&O MPPT parameters must be customized to the dynamic behavior of the specific converter adopted. A theoretical analysis allowing the optimal choice of such parameters is also carried out. Results of experimental measurements are in agreement with the predictions of theoretical analysis.

2,474 citations

Journal ArticleDOI

[...]

, Zhe Chen1
TL;DR: In this article, power electronics, the technology of efficiently processing electric power, play an essential part in the integration of the dispersed generation units for good efficiency and high performance of the power systems.
Abstract: The global electrical energy consumption is rising and there is a steady increase of the demand on the power capacity, efficient production, distribution and utilization of energy. The traditional power systems are changing globally, a large number of dispersed generation (DG) units, including both renewable and nonrenewable energy sources such as wind turbines, photovoltaic (PV) generators, fuel cells, small hydro, wave generators, and gas/steam powered combined heat and power stations, are being integrated into power systems at the distribution level. Power electronics, the technology of efficiently processing electric power, play an essential part in the integration of the dispersed generation units for good efficiency and high performance of the power systems. This paper reviews the applications of power electronics in the integration of DG units, in particular, wind power, fuel cells and PV generators.

2,098 citations

Journal ArticleDOI

[...]

TL;DR: In this paper, the authors developed a model for autonomous operation of inverter-based micro-grids, where each sub-module is modeled in state-space form and all are combined together on a common reference frame.
Abstract: The analysis of the small-signal stability of conventional power systems is well established, but for inverter based microgrids there is a need to establish how circuit and control features give rise to particular oscillatory modes and which of these have poor damping. This paper develops the modeling and analysis of autonomous operation of inverter-based microgrids. Each sub-module is modeled in state-space form and all are combined together on a common reference frame. The model captures the detail of the control loops of the inverter but not the switching action. Some inverter modes are found at relatively high frequency and so a full dynamic model of the network (rather than an algebraic impedance model) is used. The complete model is linearized around an operating point and the resulting system matrix is used to derive the eigenvalues. The eigenvalues (termed "modes") indicate the frequency and damping of oscillatory components in the transient response. A sensitivity analysis is also presented which helps identifying the origin of each of the modes and identify possible feedback signals for design of controllers to improve the system stability. With experience it is possible to simplify the model (reduce the order) if particular modes are not of interest as is the case with synchronous machine models. Experimental results from a microgrid of three 10-kW inverters are used to verify the results obtained from the model

2,071 citations

Journal ArticleDOI

[...]

Joan Rocabert
TL;DR: In this paper, a detailed analysis of the main operation modes and control structures for power converters belonging to micro-grids is carried out, focusing mainly on grid-forming, grid-feeding, and grid-supporting configurations.
Abstract: The enabling of ac microgrids in distribution networks allows delivering distributed power and providing grid support services during regular operation of the grid, as well as powering isolated islands in case of faults and contingencies, thus increasing the performance and reliability of the electrical system. The high penetration of distributed generators, linked to the grid through highly controllable power processors based on power electronics, together with the incorporation of electrical energy storage systems, communication technologies, and controllable loads, opens new horizons to the effective expansion of microgrid applications integrated into electrical power systems. This paper carries out an overview about microgrid structures and control techniques at different hierarchical levels. At the power converter level, a detailed analysis of the main operation modes and control structures for power converters belonging to microgrids is carried out, focusing mainly on grid-forming, grid-feeding, and grid-supporting configurations. This analysis is extended as well toward the hierarchical control scheme of microgrids, which, based on the primary, secondary, and tertiary control layer division, is devoted to minimize the operation cost, coordinating support services, meanwhile maximizing the reliability and the controllability of microgrids. Finally, the main grid services that microgrids can offer to the main network, as well as the future trends in the development of their operation and control for the next future, are presented and discussed.

1,923 citations

##### Network Information
###### Related Journals (5)
IEEE Transactions on Industrial Electronics
13.6K papers, 843.7K citations
91% related
IEEE Transactions on Energy Conversion
3.9K papers, 206.7K citations
85% related
IEEE Transactions on Industry Applications
8.8K papers, 287.2K citations
84% related
International Journal of Electrical Power & Energy Systems
7.9K papers, 202.5K citations
80% related
IEEE Transactions on Smart Grid
4K papers, 244.3K citations
79% related
##### Performance
###### Metrics
No. of papers from the Journal in previous years
YearPapers
20231,098
20221,004
20211,241
20201,143
20191,019
2018931