scispace - formally typeset
Search or ask a question

Showing papers in "IEEE Transactions on Power Electronics in 2004"


Journal ArticleDOI
TL;DR: In this article, power electronics, the technology of efficiently processing electric power, play an essential part in the integration of the dispersed generation units for good efficiency and high performance of the power systems.
Abstract: The global electrical energy consumption is rising and there is a steady increase of the demand on the power capacity, efficient production, distribution and utilization of energy. The traditional power systems are changing globally, a large number of dispersed generation (DG) units, including both renewable and nonrenewable energy sources such as wind turbines, photovoltaic (PV) generators, fuel cells, small hydro, wave generators, and gas/steam powered combined heat and power stations, are being integrated into power systems at the distribution level. Power electronics, the technology of efficiently processing electric power, play an essential part in the integration of the dispersed generation units for good efficiency and high performance of the power systems. This paper reviews the applications of power electronics in the integration of DG units, in particular, wind power, fuel cells and PV generators.

2,296 citations


Journal ArticleDOI
TL;DR: In this paper, a novel control strategy for parallel inverters of distributed generation units in an AC distribution system is presented, based on the droop control method, using only locally measurable feedback signals.
Abstract: This paper presents a novel control strategy for parallel inverters of distributed generation units in an AC distribution system. The proposed control technique, based on the droop control method, uses only locally measurable feedback signals. This method is usually applied to achieve good active and reactive power sharing when communication between the inverters is difficult due to its physical location. However, the conventional voltage and frequency droop methods of achieving load sharing have a slow and oscillating transient response. Moreover, there is no possibility to modify the transient response without the loss of power sharing precision or output-voltage and frequency accuracy. In this work, a great improvement in transient response is achieved by introducing power derivative-integral terms into a conventional droop scheme. Hence, better controllability of the system is obtained and, consequently, correct transient performance can be achieved. In addition, an instantaneous current control loop is also included in the novel controller to ensure correct sharing of harmonic components when supplying nonlinear loads. Simulation and experimental results are presented to prove the validity of this approach, which shows excellent performance as opposed to the conventional one.

1,003 citations


Journal ArticleDOI
TL;DR: In this paper, the authors proposed an alternative topology of nonisolated per-panel dc-dc converters connected in series to create a high voltage string connected to a simplified dc-ac inverter.
Abstract: New residential scale photovoltaic (PV) arrays are commonly connected to the grid by a single dc-ac inverter connected to a series string of pv panels, or many small dc-ac inverters which connect one or two panels directly to the ac grid. This paper proposes an alternative topology of nonisolated per-panel dc-dc converters connected in series to create a high voltage string connected to a simplified dc-ac inverter. This offers the advantages of a "converter-per-panel" approach without the cost or efficiency penalties of individual dc-ac grid connected inverters. Buck, boost, buck-boost, and Cu/spl acute/k converters are considered as possible dc-dc converters that can be cascaded. Matlab simulations are used to compare the efficiency of each topology as well as evaluating the benefits of increasing cost and complexity. The buck and then boost converters are shown to be the most efficient topologies for a given cost, with the buck best suited for long strings and the boost for short strings. While flexible in voltage ranges, buck-boost, and Cu/spl acute/k converters are always at an efficiency or alternatively cost disadvantage.

989 citations


Journal ArticleDOI
TL;DR: In this paper, an overview of single-phase inverters developed for small distributed power generators is presented, compared, and evaluated against the requirements of power decoupling and dual-grounding, the capabilities for grid-connected or/and stand-alone operations, and specific DG applications.
Abstract: This paper presents an overview of single-phase inverters developed for small distributed power generators. The functions of inverters in distributed power generation (DG) systems include dc-ac conversion, output power quality assurance, various protection mechanisms, and system controls. Unique requirements for small distributed power generation systems include low cost, high efficiency and tolerance for an extremely wide range of input voltage variations. These requirements have driven the inverter development toward simpler topologies and structures, lower component counts, and tighter modular design. Both single-stage and multiple-stage inverters have been developed for power conversion in DG systems. Single-stage inverters offer simple structure and low cost, but suffer from a limited range of input voltage variations and are often characterized by compromised system performance. On the other hand, multiple-stage inverters accept a wide range of input voltage variations, but suffer from high cost, complicated structure and low efficiency. Various circuit topologies are presented, compared, and evaluated against the requirements of power decoupling and dual-grounding, the capabilities for grid-connected or/and stand-alone operations, and specific DG applications in this paper, along with the identification of recent development trends of single-phase inverters for distributed power generators.

899 citations


Journal ArticleDOI
TL;DR: In this paper, power quality problems associated with distributed power (DP) inverters, implemented in large numbers onto the same distribution network, are investigated, and a complete network simulation study on an existing residential network with large penetration of photovoltaics (PV) on rooftops of houses and commercial buildings is included.
Abstract: Power quality problems associated with distributed power (DP) inverters, implemented in large numbers onto the same distribution network, are investigated. Currently, these power quality problems are mainly found in projects with large penetration of photovoltaics (PV) on rooftops of houses and commercial buildings. The main object of this paper is to analyze the observed phenomena of harmonic interference of large populations of these inverters and to compare the network interaction of different inverter topologies and control options. These power quality phenomenons are investigated by using extensive laboratory experiments, as well as computer modeling of different inverter topologies. A complete network simulation study on an existing residential network with large penetration of PVs, is included.

801 citations


Journal ArticleDOI
TL;DR: In this paper, a new zero-voltage-switching (ZVS) bidirectional dc-dc converter is proposed for medium and high power applications especially for auxiliary power supply in fuel cell vehicles and power generation where the high power density, low cost, lightweight and high reliability power converters are required.
Abstract: This paper presents a new zero-voltage-switching (ZVS) bidirectional dc-dc converter. Compared to the traditional full and half bridge bidirectional dc-dc converters for the similar applications, the new topology has the advantages of simple circuit topology with no total device rating (TDR) penalty, soft-switching implementation without additional devices, high efficiency and simple control. These advantages make the new converter promising for medium and high power applications especially for auxiliary power supply in fuel cell vehicles and power generation where the high power density, low cost, lightweight and high reliability power converters are required. The operating principle, theoretical analysis, and design guidelines are provided in this paper. The simulation and the experimental verifications are also presented.

684 citations


Journal ArticleDOI
TL;DR: In this paper, the design and analysis of a unified controller for multibus microgrid system is presented, which includes inner voltage and current loops for regulating the three-phase grid-interfacing inverter, and external power control loops for controlling real and reactive power flow and for facilitating power sharing between the paralleled DG systems.
Abstract: This paper concentrates on the design and analysis of a controller for multibus microgrid system. The controller proposed for use with each distributed generation (DG) system in the microgrid contains inner voltage and current loops for regulating the three-phase grid-interfacing inverter, and external power control loops for controlling real and reactive power flow and for facilitating power sharing between the paralleled DG systems when a utility fault occurs and the microgrid islands. The controller also incorporates synchronization algorithms for ensuring smooth and safe reconnection of the micro and utility grids when the fault is cleared. With the implementation of the unified controller, the multibus microgrid system is able to switch between islanding and grid-connected modes without disrupting the critical loads connected to it. The performance of this unified controller has been verified in simulation using a real-time digital simulator and experimentally using a scaled laboratory prototype.

672 citations


Journal ArticleDOI
TL;DR: In this paper, an intelligent maximum power extraction algorithm is developed by the authors to improve the system performance and to facilitate the control implementation, where an advanced hill-climb searching method is developed to take into account the wind turbine inertia.
Abstract: This paper focuses on the development of maximum wind power extraction algorithms for inverter-based variable speed wind power generation systems. A review of existing maximum wind power extraction algorithms is presented in this paper, based on which an intelligent maximum power extraction algorithm is developed by the authors to improve the system performance and to facilitate the control implementation. As an integral part of the max-power extraction algorithm, advanced hill-climb searching method has been developed to take into account the wind turbine inertia. The intelligent memory method with an on-line training process is described in this paper. The developed maximum wind power extraction algorithm has the capability of providing initial power demand based on error driven control, searching for the maximum wind turbine power at variable wind speeds, constructing an intelligent memory, and applying the intelligent memory data to control the inverter for maximum wind power extraction, without the need for either knowledge of wind turbine characteristics or the measurements of mechanical quantities such as wind speed and turbine rotor speed. System simulation results and test results have confirmed the functionality and performance of this method.

507 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present the development and test of a flexible control strategy for an 11-kW wind turbine with a back-to-back power converter capable of working in both stand-alone and grid-connection mode.
Abstract: This paper presents the development and test of a flexible control strategy for an 11-kW wind turbine with a back-to-back power converter capable of working in both stand-alone and grid-connection mode. The stand-alone control is featured with a complex output voltage controller capable of handling nonlinear load and excess or deficit of generated power. Grid-connection mode with current control is also enabled for the case of isolated local grid involving other dispersed power generators such as other wind turbines or diesel generators. A novel automatic mode switch method based on a phase-locked loop controller is developed in order to detect the grid failure or recovery and switch the operation mode accordingly. A flexible digital signal processor (DSP) system that allows user-friendly code development and online tuning is used to implement and test the different control strategies. The back-to-back power conversion configuration is chosen where the generator converter uses a built-in standard flux vector control to control the speed of the turbine shaft while the grid-side converter uses a standard pulse-width modulation active rectifier control strategy implemented in a DSP controller. The design of the longitudinal conversion loss filter and of the involved PI-controllers are described in detail. Test results show the proposed methods works properly.

490 citations


Journal ArticleDOI
TL;DR: In this paper, the authors proposed a control strategy for the parallel operation of distributed generation systems (DGS) in a standalone ac power supply, which is achieved by combining two control methods: droop control method and average power control method.
Abstract: This work is concerned with the control strategy for the parallel operation of distributed generation systems (DGS) in a standalone ac power supply. The proposed control method uses only low-bandwidth data communication signals between each generation system in addition to the locally measurable feedback signals. This is achieved by combining two control methods: droop control method and average power control method. The average power method with slow update rate is used in order to overcome the sensitivity about voltage and current measurement errors. In addition, a harmonic droop scheme for sharing harmonic content of the load currents is proposed based on the voltages and currents control algorithm. Experimental and simulation studies using two parallel three-phase pulsewidth modulation (PWM) inverters are presented to show the effectiveness of the proposed control.

457 citations


Journal ArticleDOI
TL;DR: In this article, a PWM switching strategy was proposed to eliminate common mode voltage using the open-end winding configuration for the induction motor using a single dc-link with half the voltage compared to the conventional three-level inverter based scheme.
Abstract: Pulse-width modulated (PWM) inverters are known to generate common mode voltages which cause motor bearing currents in the induction motor drives. They also result in leakage currents which act as sources of conducted electromagnetic interference in the drive system. The common mode voltage generated by a conventional three-level inverter can be eliminated by switching only the voltage space vectors which do not produce the common mode voltage. This paper presents a PWM switching strategy to eliminate common mode voltage using the open-end winding configuration for the induction motor. The switching strategy presented in this paper, does not generate any alternating common mode voltages in the drive system and hence the electrostatic coupling of the common mode voltage, which results in the bearing currents and the leakage currents, is avoided. The proposed scheme is devoid of neutral point voltage fluctuations and does not require neutral point clamping diodes, when compared to the common mode elimination scheme based on the conventional three-level inverter topology. Also, the present scheme uses a single dc-link with half the voltage compared to the conventional three-level inverter based scheme.

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a non-detection zone (NDZ) as a performance index to evaluate different anti-islanding schemes and derived the NDZ for three basic passive anti-ISL schemes: under/over voltage, underover frequency, and phase jump.
Abstract: This paper proposes a nondetection zone (NDZ) as a performance index to evaluate different anti-islanding schemes. The NDZ for three basic passive anti-islanding schemes: under/over voltage, under/over frequency, and phase jump are derived analytically and validated by simulation. Based on the NDZ, not only can the dominant factors that influence anti-islanding protection be identified, it may also support definition of optimal combined schemes that lead to a reduced NDZ. The methodology presented in the paper can be extended to the evaluation of other anti-islanding schemes.

Journal ArticleDOI
TL;DR: In this paper, the effect of the dynamic voltage restorer (DVR) on a distribution test facility in Kyndby, Denmark is investigated under both faulted and non-faulted system states, for a variety of linear and nonlinear loads.
Abstract: The dynamic voltage restorer (DVR) has become popular as a cost effective solution for the protection of sensitive loads from voltage sags. Implementations of the DVR have been proposed at both a low voltage (LV) level, as well as a medium voltage (MV) level; and give an opportunity to protect high power sensitive loads from voltage sags. This paper reports practical test results obtained on a medium voltage (10 kV) level using a DVR at a distribution test facility in Kyndby, Denmark. The DVR was designed to protect a 400-kVA load from a 0.5-p.u. maximum voltage sag. The reported DVR verifies the use of a combined feed-forward and feed-back technique of the controller and it obtains both good transient and steady-state responses. The effect of the DVR on the system is experimentally investigated under both faulted and nonfaulted system states, for a variety of linear and nonlinear loads. Variable duration voltage sags were created using a controllable LV breaker fed by a 630 kVA distribution transformer placed upstream of the sensitive load. The fault currents in excess of 12 kA were designed and created to obtain the required voltage sags. It is concluded the DVR works well in all operating conditions.

Journal ArticleDOI
TL;DR: A modified direct torque control (DTC) scheme for interior permanent magnet synchronous machine (IPMSM) is investigated in this article, which features in very low flux and torque ripple and almost fixed switching frequency.
Abstract: A modified direct torque control (DTC) scheme for interior permanent magnet synchronous machine (IPMSM) is investigated in this paper, which features in very low flux and torque ripple and almost fixed switching frequency. It is based on the compensation of the error flux linkage vector by means of space vector modulation. Modeling and experimental results show that the flux and torque ripples are greatly reduced when compared with those of the basic DTC. With the new scheme, very short sampling time is not essential. All the advantages of the basic DTC are still retained. In addition, fixed switching frequency at different operating conditions becomes possible. The field-weakening control of this drive is also studied; an IPM DTC drive with a wider operation range and lower flux and torque ripple has been achieved experimentally.

Journal ArticleDOI
TL;DR: In this paper, different semiconductors are briefly compared considering the requirements of a solid-state switch integrated into a 20kV medium-voltage grid, and various switch topologies are developed, which are compared under technical and economical aspects.
Abstract: State-of-the-art mechanical circuit breakers in medium-voltage systems allow a safe handling of short-circuits if the short circuit power of the grid is limited. Using delayed turn-off times, the circuit breakers can be coordinated with lower level protection gear. Hence, a high availability of the grid can be guaranteed. However, during a short-circuit a significant voltage sag can be noticed locally in the medium-voltage grid. Sensitive loads such as computers will fail even if the voltage returns within a few seconds. A semiconductor circuit breaker, however, is able to switch fast enough to keep voltage disturbance within acceptable limits. The optimization and selection of power electronic switch topologies is critical. In this paper, different semiconductors are briefly compared considering the requirements of a solid-state switch integrated into a 20-kV medium-voltage grid. Based on these semiconductor characteristics, various switch topologies are developed, which are compared under technical and economical aspects. It is shown that solid-state circuit breakers offer significant advantages when compared to present solutions and can be used in today's medium-voltage power systems.

Journal ArticleDOI
TL;DR: In this paper, an iterative learning control (ILC) algorithm was proposed to reduce the periodic torque ripple in permanent magnet synchronous motors (PMSMs) by using Fourier series expansion.
Abstract: Parasitic torque pulsations exist in permanent magnet synchronous motors (PMSMs) due to nonsinusoidal flux density distribution around the air-gap, errors in current measurements, and variable magnetic reluctance of the air-gap due to stator slots. These torque pulsations vary periodically with rotor position and are reflected as speed ripple, which degrades the PMSM drive performance, particularly at low speeds. Because of the periodic nature of torque ripple, iterative learning control (ILC) is intuitively an excellent choice for torque ripple minimization. In this paper, first we propose an ILC scheme implemented in time domain to reduce periodic torque pulsations. A forgetting factor is introduced in this scheme to increase the robustness of the algorithm against disturbance. However, this limits the extent to which torque pulsations can be suppressed. In order to eliminate this limitation, a modified ILC scheme implemented in frequency domain by means of Fourier series expansion is presented. Experimental evaluations of both proposed schemes are carried out on a DSP-controlled PMSM drive platform. Test results obtained demonstrate the effectiveness of the proposed control schemes in reducing torque ripple by a factor of approximately three under various operating conditions.

Journal ArticleDOI
TL;DR: In this paper, a new active damping method that does not require the use of more sensors is presented. But the method is used only for the optimum choice of the parameters in the filter and an on-line implementation is not needed.
Abstract: Active rectifiers/inverters are becoming used more and more often in regenerative systems and distributed power systems. Typically, the interface between the grid and rectifier is either an inductor or an LCL-filter. The use of an LCL-filter mitigates the switching ripple injected in the grid by a three-phase active rectifier. However, stability problems can arise in the current control loop. In order to overcome them, a damping resistor can be inserted, at the price of a reduction of efficiency. The use of active damping by means of control may seem attractive but it is often limited by the use of more sensors compared to the standard control and also by a complex tuning procedure of the controllers. This paper introduces a new active damping method that does not require the use of more sensors. It consists of adding a filter on the reference voltage for the modulator. The tuning process of this filter is easily done, for a wide range of sampling frequencies, with the use of genetic algorithms. This method is used only for the optimum choice of the parameters in the filter and an on-line implementation is not needed. Thus the resulting active damping solution does not need new sensors or complex calculations. Moreover, in the paper particular attention is devoted to the susceptibility of the system in a high polluting environment.

Journal ArticleDOI
TL;DR: In this paper, the authors present a noninverting buck-boost switching converter for low voltage, portable applications, which can dynamically adjust the output voltage from 0.4 to 4.0 V, while satisfying a maximum load current of 0.65 A from an input supply of 2.4-3.4 V.
Abstract: With the increasing use of low voltage portable devices and growing requirements of functionalities embedded into such devices, efficient power management techniques are needed for longer battery life. Given the highly variable nature of batteries (e.g., 2.7-4.2 V for Li-ion), systems often require supply voltages to be both higher and lower than the battery voltage (e.g., power amplifier for CDMA applications), while supplying significant current, which is most efficiently generated by a noninverting buck-boost switching converter. In this paper, the design and experimental results of a new dynamic, noninverting, synchronous buck-boost converter for low voltage, portable applications is reported. The converter's output voltage is dynamically adjustable (on-the-fly) from 0.4 to 4.0 V, while capable of supplying a maximum load current of 0.65 A from an input supply of 2.4-3.4 V. The worst-case response time of the converter for a 0.4 to 4 V step change in its output voltage (corresponding to a 0.2 to 2 V step at its reference input) is less than 300 /spl mu/sec and to a load-current step of 0 to 0.5 A is within 200 /spl mu/sec, yielding only a transient error of 40 mV in the output voltage. This paper also presents a nonmathematical, intuitive analysis of the time-averaged, small-signal model of a noninverting buck-boost converter.

Journal ArticleDOI
TL;DR: In this paper, a three-loop control scheme, consisting of a common output voltage loop, individual inner current loops, and individual input voltage loops, is proposed to achieve input voltage and load current sharing.
Abstract: This paper explores a new configuration for modular DC/DC converters, namely, series connection at the input, and parallel connection at the output, such that the converters share the input voltage and load current equally. This is an important step toward realizing a truly modular power system architecture, where low-power, low-voltage, building block modules can be connected in any series/parallel combination at input or at output, to realize any given system specifications. A three-loop control scheme, consisting of a common output voltage loop, individual inner current loops, and individual input voltage loops, is proposed to achieve input voltage and load current sharing. The output voltage loop provides the basic reference for inner current loops, which is modified by the respective input voltage loops. The average of converter input voltages, which is dynamically varying, is chosen as the reference for input voltage loops. This choice of reference eliminates interaction among different control loops. The input-series and output-parallel (ISOP) configuration is analyzed using the incremental negative resistance model of DC/DC converters. Based on the analysis, design methods for input voltage controller are developed. Analysis and proposed design methods are verified through simulation, and experimentally, on an ISOP system consisting of two forward converters.

Journal ArticleDOI
TL;DR: In this paper, a digital control strategy for three-phase pulse-width modulation voltage inverters used in a single stand-alone ac distributed generation system is discussed, which utilizes the perfect robust servomechanism problem control theory to allow elimination of specified unwanted voltage harmonics from the output voltages under severe nonlinear load and to achieve fast recovery performance on load transient.
Abstract: This paper discusses a digital control strategy for three-phase pulse-width modulation voltage inverters used in a single stand-alone ac distributed generation system. The proposed control strategy utilizes the perfect robust servomechanism problem control theory to allow elimination of specified unwanted voltage harmonics from the output voltages under severe nonlinear load and to achieve fast recovery performance on load transient. This technique is combined with a discrete sliding mode current controller that provides fast current limiting capability necessary under overload or short circuit conditions. The proposed control strategy has been implemented on a digital signal processor system and experimentally tested on an 80-kVA prototype unit. The results showed the effectiveness of the proposed control algorithm.

Journal ArticleDOI
TL;DR: In this paper, a cost-effective single-stage inverter with maximum power point tracking (MPPT) in combination with one-cycle control (OCC) for photovoltaic power generation is proposed.
Abstract: Renewable energy, such as solar energy, is desirable for power generation due to their unlimited existence and environmental friendly nature. However, the high initial investment impedes its wide commercialization. This paper proposes a cost-effective single-stage inverter with maximum power point tracking (MPPT) in combination with one-cycle control (OCC) for photovoltaic power generation. This control scheme is based on the output current-adjusting feature of OCC. The output current of the inverter can be adjusted according to the voltage of the photovoltaic (PV) array so as to extract the maximum power from it. In the mean time, OCC guarantees that the output current is proportional and in phase with the grid voltage. All these are accomplished in one power stage and a simple control circuit. No detection and calculation of power are needed. Compared with previously proposed approaches, this method is much more efficient and cost-effective and yet exhibits excellent performance. The principle is explained qualitatively and extensive experiments have been carried out to verify the proposed method.

Journal ArticleDOI
TL;DR: In this paper, all possible solutions to the problem of eliminating harmonics in a switching converter are found. But, the authors did not consider the case of the fifth and seventh harmonics.
Abstract: The problem of eliminating harmonics in a switching converter is considered. That is, given a desired fundamental output voltage, the problem is to find the switching times (angles) that produce the fundamental while not generating specifically chosen harmonics. In contrast to the well known work of Patel and Hoft and others, here all possible solutions to the problem are found. This is done by first converting the transcendental equations that specify the harmonic elimination problem into an equivalent set of polynomial equations. Then, using the mathematical theory of resultants, all solutions to this equivalent problem can be found. In particular, it is shown that there are new solutions that have not been previously reported in the literature. The complete solutions for both unipolar and bipolar switching patterns to eliminate the fifth and seventh harmonics are given. Finally, the unipolar case is again considered where the fifth, seventh, 11th, and 13th harmonics are eliminated along with corroborative experimental results.

Journal ArticleDOI
TL;DR: In this paper, the authors examined the effects of parasitic couplings among the filter components and the coupling between the filter component and the ground plane of printed circuit board (PCB).
Abstract: Two filters with identical topologies and components can exhibit a significant difference in filter effectiveness when the layouts are different The goal of this paper is to examine the effects of parasitic couplings among the filter components and the coupling between the filter components and the ground plane of printed circuit board (PCB) Specifically, six different coupling effects are investigated: the couplings between the inductor and capacitors, a filter inductor and trace loops, two filter inductors, two capacitor parasitic inductances, a filter inductor and ground plane, and two trace loops Experiments were performed, theories were developed to investigate and characterize these parasitic couplings

Journal ArticleDOI
TL;DR: IEEE 1547 2003 standard for interconnecting distributed resources with electric power systems is the first in the 1547 series of planned interconnection standards to accommodate modern electrical and electronics systems and improved grid communications and operations.
Abstract: IEEE 1547 2003 standard for interconnecting distributed resources with electric power systems is the first in the 1547 series of planned interconnection standards. Major issues and a wealth of constructive dialogue arose during 1547 development. There was also a perceived increased vitality in updating complementary IEEE standards and developing additional standards to accommodate modern electrical and electronics systems and improved grid communications and operations. Power engineers and other stakeholders looking to the future are poised to incorporate 1547 into their knowledge base to help transform our nation's aging distribution systems while alleviating some of the burden on existing transmission systems.

Journal ArticleDOI
TL;DR: In this paper, it is shown that an increase of the stator phase number to at least five (or more) enables completely independent vector control of two or more multiphase machines that are supplied from a single current-controlled voltage source inverter.
Abstract: Since variable speed electric drive systems are supplied from power electronic converters, it is possible to utilize ac machines with a phase number higher than three. It is shown in the paper, using general theory of electrical machines, that an increase of the stator phase number to at least five (or more) enables completely independent vector control of two (or more) multiphase machines that are supplied from a single current-controlled voltage source inverter. In order to achieve such an independent control it is necessary to connect multiphase stator windings of the machines in series and perform an appropriate phase sequence transposition. The concept is equally applicable to any multiphase ac machine type and its major advantage, compared to an equivalent multimotor three-phase drive system, is the saving of a certain number of inverter legs. The actual saving depends on the number of phases. The concept is introduced using an n-phase induction machine as the starting point and further analysis is restricted to an odd number of phases, for the reason explained in the paper. Classification of all the possible cases that may arise is given, followed by presentation of connection diagrams for selected phase numbers. Detailed verification of the proposed concept is provided by simulating the operation of a seven-phase three-motor drive system, controlled using indirect rotor flux oriented control principles. Some preliminary experimental results, which confirm the feasibility of a two-motor series-connected drive system, are included as well. The main advantages and drawbacks of the concept, when compared with an equivalent three-phase multimotor drive system, are finally addressed.

Journal ArticleDOI
TL;DR: In this article, a pulsewidth modulation (PWM) plus phase-shift control bidirectional dc-dc converter is proposed to reduce current stress and conduction losses, and to expand ZVS range.
Abstract: A pulse-width modulation (PWM) plus phase-shift control bidirectional dc-dc converter is proposed. In this converter, PWM control and phase-shift control are combined to reduce current stress and conduction losses, and to expand ZVS range. The operation principle and analysis of the converter are explained, and ZVS condition is derived. A prototype of PWM plus phase-shift bidirectional dc-dc converter is built to verify the analysis.

Journal ArticleDOI
Abstract: The main features of the instantaneous reactive power (IRP) p-q theory, considered as a power theory of three-phase systems, are analyzed in this paper using the theory of the currents' physical components (CPC). This analysis shows that the p and q powers are not associated with separate power phenomena, but with multiple phenomena. Moreover, the results of the IRP p-q theory contradict some common interpretations of power phenomena in three-phase circuits. Namely, according to the IRP p-q Theory the instantaneous reactive current can occur even if a load has zero reactive power, Q. Similarly, the instantaneous active current can occur even if a load has zero active power, P. Moreover, these two currents in circuits with a sinusoidal supply voltage can be nonsinusoidal even if there is no source of current distortion in the load. The analysis shows that a pair of values of instantaneous active and reactive p and q powers does not enable us to draw any conclusion with respect to the power properties of three-phase unbalanced loads even in a sinusoidal situation. Thus, the instantaneous reactive power p-q theory does not identify power properties of such loads instantaneously. This conclusion may have an importance for control algorithms of active power filters. The paper reveals the relationship between the p and q powers and the active, reactive and unbalanced powers, P, Q, and D and specifies the required energy storage capability of active power filters operated under sinusoidal unbalanced conditions.

Journal ArticleDOI
Jin Wang1, F.Z. Peng1, J. Anderson1, A. Joseph1, R. Buffenbarger1 
TL;DR: In this paper, a low-cost 10-kW converter system consisting of an isolated dc-dc converter to boost the fuel cell voltage to 400 V dc and a pulsewidth modulated inverter with filter to convert the dc voltage to two split-phase 120-V ac.
Abstract: The high installation cost is the major obstacle of the commercialization of the solid oxide fuel cell for distributed power generation. This paper presents a new low cost 10-kW converter system to overcome this obstacle. The proposed system consists of an isolated dc-dc converter to boost the fuel cell voltage to 400 V dc and a pulse-width modulated inverter with filter to convert the dc voltage to two split-phase 120-V ac. The dc-dc converter uses phase shifting to control power flow through a transformer with a metal oxide semiconductor field effect transistor full bridge on the low voltage side and a voltage doubler on the high voltage side. One IPM is used to realize the voltage doubler and the dc-ac inverter. Compared to the existing fuel cell converter systems, the proposed circuit has low cost, less component count, smaller size, and reduced dc-dc converter peak current. Simulation and experimental results are demonstrated.

Journal ArticleDOI
TL;DR: In this paper, a variable frequency controller is used to control an inductor/capacitor/inductor load resonant inverter for inductive power transfer applications and the steady state operation of this system is determined by a power flow balance between the inverter and the resonant tank.
Abstract: A inductor/capacitor/inductor load resonant inverter is investigated for inductive power transfer applications. The inverter uses a variable frequency controller and operates in discontinuous current mode. The steady state operation of this system is determined by a power flow balance between the inverter and the resonant tank. The results are used to design a system to achieve maximum power transfer.

Journal ArticleDOI
Abstract: This work presents the theory and implementation of a novel sensorless control technique for the brushless DC (BLDC) motor. The proposed new sensorless drive method solves the problem of the sensorless BLDC motor drives at very low speeds. It provides a highly accurate and robust sensorless operation from near zero to high speeds. For this purpose, an approach, a new flux linkage function is defined, that is speed-independent. The validity of the proposed method is verified through both simulation and experimental results and discussion.