Showing papers in "IEEE Transactions on Power Electronics in 2017"
[...]
TL;DR: In this paper, the authors comprehensively review and classify various step-up dc-dc converters based on their characteristics and voltage-boosting techniques, and discuss the advantages and disadvantages of these voltage boosting techniques and associated converters.
Abstract: DC–DC converters with voltage boost capability are widely used in a large number of power conversion applications, from fraction-of-volt to tens of thousands of volts at power levels from milliwatts to megawatts. The literature has reported on various voltage-boosting techniques, in which fundamental energy storing elements (inductors and capacitors) and/or transformers in conjunction with switch(es) and diode(s) are utilized in the circuit. These techniques include switched capacitor (charge pump), voltage multiplier, switched inductor/voltage lift, magnetic coupling, and multistage/-level, and each has its own merits and demerits depending on application, in terms of cost, complexity, power density, reliability, and efficiency. To meet the growing demand for such applications, new power converter topologies that use the above voltage-boosting techniques, as well as some active and passive components, are continuously being proposed. The permutations and combinations of the various voltage-boosting techniques with additional components in a circuit allow for numerous new topologies and configurations, which are often confusing and difficult to follow. Therefore, to present a clear picture on the general law and framework of the development of next-generation step-up dc–dc converters, this paper aims to comprehensively review and classify various step-up dc–dc converters based on their characteristics and voltage-boosting techniques. In addition, the advantages and disadvantages of these voltage-boosting techniques and associated converters are discussed in detail. Finally, broad applications of dc–dc converters are presented and summarized with comparative study of different voltage-boosting techniques.
740 citations
[...]
TL;DR: In this article, the adaptive/improved droop control, network-based control methods, and cost-based droop schemes are compared and summarized for active power sharing for islanded microgrids.
Abstract: Microgrids consist of multiple parallel-connected distributed generation (DG) units with coordinated control strategies, which are able to operate in both grid-connected and islanded modes Microgrids are attracting considerable attention since they can alleviate the stress of main transmission systems, reduce feeder losses, and improve system power quality When the islanded microgrids are concerned, it is important to maintain system stability and achieve load power sharing among the multiple parallel-connected DG units However, the poor active and reactive power sharing problems due to the influence of impedance mismatch of the DG feeders and the different ratings of the DG units are inevitable when the conventional droop control scheme is adopted Therefore, the adaptive/improved droop control, network-based control methods, and cost-based droop schemes are compared and summarized in this paper for active power sharing Moreover, nonlinear and unbalanced loads could further affect the reactive power sharing when regulating the active power, and it is difficult to share the reactive power accurately only by using the enhanced virtual impedance method Therefore, the hierarchical control strategies are utilized as supplements of the conventional droop controls and virtual impedance methods The improved hierarchical control approaches such as the algorithms based on graph theory, multi-agent system, the gain scheduling method, and predictive control have been proposed to achieve proper reactive power sharing for islanded microgrids and eliminate the effect of the communication delays on hierarchical control Finally, the future research trends on islanded microgrids are also discussed in this paper
403 citations
[...]
TL;DR: A phase-locked loop (PLL) is a nonlinear negative feedback control system that synchronizes its output in frequency as well as in phase with its input PLLs are now widely used for the synchronization of power-electronics-based converters and also for monitoring and control purposes in different engineering fields as mentioned in this paper.
Abstract: A phase-locked loop (PLL) is a nonlinear negative-feedback control system that synchronizes its output in frequency as well as in phase with its input PLLs are now widely used for the synchronization of power-electronics-based converters and also for monitoring and control purposes in different engineering fields In recent years, there have been many attempts to design more advanced PLLs for three-phase applications The aim of this paper is to provide overviews of these attempts, which can be very useful for engineers and academic researchers
358 citations
[...]
TL;DR: In this paper, a Bayesian network-based data-driven fault diagnosis methodology of three-phase inverters is proposed to solve the uncertainty problem in fault diagnosis of inverters, which is caused by various reasons, such as bias and noise of sensors.
Abstract: Permanent magnet synchronous motor and power electronics-based three-phase inverter are the major components in the modern industrial electric drive system, such as electrical actuators in an all-electric subsea Christmas tree. Inverters are the weakest components in the drive system, and power switches are the most vulnerable components in inverters. Fault detection and diagnosis of inverters are extremely necessary for improving drive system reliability. Motivated by solving the uncertainty problem in fault diagnosis of inverters, which is caused by various reasons, such as bias and noise of sensors, this paper proposes a Bayesian network-based data-driven fault diagnosis methodology of three-phase inverters. Two output line-to-line voltages for different fault modes are measured, the signal features are extracted using fast Fourier transform, the dimensions of samples are reduced using principal component analysis, and the faults are detected and diagnosed using Bayesian networks. Simulated and experimental data are used to train the fault diagnosis model, as well as validate the proposed fault diagnosis methodology.
206 citations
[...]
TL;DR: A composite control method combining the DPCC part and current prediction and feedforward compensation part based on SCDO, called DPCC + SCDO method, is developed and a novel sliding-mode exponential reaching law is proposed to further improve the performance of the proposed current control approach.
Abstract: In order to optimize the current-control performance of the permanent-magnet synchronous motor (PMSM) system with model parameter mismatch and one-step control delay, an improved deadbeat predictive current control (DPCC) algorithm for the PMSM drive systems is proposed in this paper. First, the performance of the conventional predictive current control, when parameter mismatch exist, is analyzed, and then a stator current and disturbance observer (SCDO) based on sliding-mode exponential reaching law, which is able to simultaneously predict future value of stator current and track system disturbance caused by parameter mismatch in real time, is proposed. Based on this SCDO, prediction currents are used for replacing the sampled current in DPCC to compensate one-step delay, and estimated parameter disturbances are considered as the feedforward value to compensate the voltage reference calculated by deadbeat predictive current controller. Thus, a composite control method combining the DPCC part and current prediction and feedforward compensation part based on SCDO, called DPCC + SCDO method, is developed. Moreover, based on conventional exponential reaching law, a novel sliding-mode exponential reaching law is proposed to further improve the performance of the DPCC + SCDO method. Simulation and experimental results both show the validity of the proposed current control approach.
205 citations
[...]
TL;DR: In this article, a frequency-fixed SOGI-based phase-locked loop (FFSOGI) is proposed to ensure stability and simple implementation in single-phase grid-connected power converters.
Abstract: Second-order generalized integrator (SOGI) based phase-locked loops (PLLs) are widely used for grid synchronization in single-phase grid-connected power converters. Previously, the estimated frequency of the PLL stage is fed back to the front-end SOGI block to make SOGI-PLLs frequency-adaptive, which increases the implementation complexity, and makes the tuning sensitive, thus reducing stability margins. Alternatively, a frequency-fixed SOGI-based PLL (briefly called FFSOGI-PLL) is proposed to ensure stability and simple implementation in this letter. It is commonly known that the in-phase and quadrature-phase signals generated by the frequency-fixed SOGI are of different amplitudes in the presence of frequency drifts, which causes second-harmonic ripples in the estimated parameters of the PLL loop. To deal with this issue, a simple yet effective method is developed in FFSOGI-PLL. The standard SOGI-PLL is first introduced, followed by the working principle and small-signal model of FFSOGI-PLL. The FFSOGI-PLL is then compared with the SOGI-PLL in terms of stability and transient performance. Finally, experimental results are presented to demonstrate the effectiveness of FFSOGI-PLL.
178 citations
[...]
TL;DR: In this paper, an optimized magnetic coupler using ferrite cores and magnetic shielding structure is proposed to ensure stable power transfer and high efficiency for electric vehicles powered by battery and supercapacitor.
Abstract: Wireless power transfer (WPT) is the preferred charging method for electric vehicles (EVs) powered by battery and supercapacitor. In this paper, a novel WPT system with constant current charging capability for sightseeing car with supercapacitor storage is designed. First, an optimized magnetic coupler using ferrite cores and magnetic shielding structure is proposed to ensure stable power transfer and high efficiency. Compared with the traditional planar shape ferrite core coupler, the proposed magnetic coupler requires lesser ferrite material without degrading the performance of the WPT system. Second, the model of supercapacitor is applied to the WPT system and the relationship between equivalent load resistances of supercapacitor and charging time is analyzed in detail. Then, a Buck converter with proportional integral (PI) controller is implemented on the secondary side to maintain constant charging current for the variable load. Finally, the proposed design is verified by experiments. Constant charging current of 31.5 A across transfer distance of 15 cm is achieved. The peak transfer power and system efficiency are 2.86 kW and 88.05%, respectively.
175 citations
[...]
TL;DR: In this article, the authors proposed a new method to integrate the compensated coil into the main coil structure, which not only makes the system more compact, but also the extra coupling effects resulting from the integration are either eliminated or minimized to a negligible level.
Abstract: There is a need for charging electric vehicles (EVs) wirelessly since it provides a more convenient, reliable, and safer charging option for EV customers. A wireless charging system using a double-sided LCC compensation topology is proven to be highly efficient; however, the large volume induced by the compensation coils is a drawback. In order to make the system more compact, this paper proposes a new method to integrate the compensated coil into the main coil structure. With the proposed method, not only is the system more compact, but also the extra coupling effects resulting from the integration are either eliminated or minimized to a negligible level. Three-dimensional finite-element analysis tool ANSYS MAXWELL is employed to optimize the integrated coils, and detailed design procedures on improving system efficiency are also given in this paper. The wireless charging system with the proposed integration method is able to transfer 3.0 kW with 95.5% efficiency (overall dc to dc) at an air gap of 150 mm.
171 citations
[...]
TL;DR: In this article, the authors present a 2-kW, 60-Hz, 450-V -to-240-V power inverter, designed and tested subject to the specifications of the Google/IEEE Little Box Challenge, which achieves a high power density of 216 W/in $3$ and a peak overall efficiency of 97.6%, while meeting the constraints including input current ripple, load transient, thermal, and FCC Class B EMC specifications.
Abstract: High-efficiency and compact single-phase inverters are desirable in many applications such as solar energy harvesting and electric vehicle chargers. This paper presents a 2-kW, 60-Hz, 450-V $ _{\text{DC}}$ -to-240-V $_{\text{AC}}$ power inverter, designed and tested subject to the specifications of the Google/IEEE Little Box Challenge. The inverter features a seven-level flying capacitor multilevel converter, with low-voltage GaN switches operating at 120 kHz. The inverter also includes an active buffer for twice-line-frequency power pulsation decoupling, which reduces the required capacitance by a factor of 8 compared to conventional passive decoupling capacitors, while maintaining an efficiency above 99%. The inverter prototype is a self-contained box that achieves a high power density of 216 W/in $^3$ and a peak overall efficiency of 97.6%, while meeting the constraints including input current ripple, load transient, thermal, and FCC Class B EMC specifications.
170 citations
[...]
TL;DR: In this article, the effect of the phase lead or lag on the active damping is investigated, and it is revealed that when the resonant frequency drifts away from its nominal value, the phase-lead or lag introduced by the notch filter may make itself fail to damp the resonance.
Abstract: Resonant poles of LCL filters may challenge the entire system stability especially in digital-controlled pulse width modulation (PWM) inverters. In order to tackle the resonance issues, many active damping solutions have been reported. For instance, a notch filter can be employed to damp the resonance, where the notch frequency should be aligned exactly to the resonant frequency of the LCL filter. However, parameter variations of the LCL filter as well as the time delay appearing in digital control systems will induce resonance drifting, and thus break this alignment, possibly deteriorating the original damping. In this paper, the effectiveness of the notch filter-based active damping is first explored, considering the drifts of the resonant frequency. It is revealed that when the resonant frequency drifts away from its nominal value, the phase lead or lag introduced by the notch filter may make itself fail to damp the resonance. Specifically, the phase lag can make the current control stable despite of the resonant frequency drifting, when the grid current is fed back. In contrast, in the case of an inverter current feedback control, the influence of the phase lead or lag on the active damping is dependent on the actual resonant frequency. Accordingly, in this paper, the notch frequency is designed away from the nominal resonant frequency to tolerate the resonance drifting, being the proposed robust active damping. Simulations and experiments performed on a 2.2-kW three-phase grid-connected PWM inverter verify the effectiveness of the proposed design for robust active damping using digital notch filters.
168 citations
[...]
TL;DR: In this paper, a review of single-phase phase-locked loops (PLLs) with different structures and properties has been provided, and the authors classified them into two major categories: power-based and quadrature signal generation-based PLLs.
Abstract: Single-phase phase-locked loops (PLLs) are popular for the synchronization and control of single-phase grid-connected converters. They are also widely used for monitoring and diagnostic purposes in the power and energy areas. In recent years, a large number of single-phase PLLs with different structures and properties have been proposed in the literature. The main aim of this paper is to provide a review of these PLLs. To this end, the single-phase PLLs are first classified into two major categories: 1) power-based PLLs and 2) quadrature signal generation-based PLLs. The members of each category are then described and their pros and cons are discussed. This paper provides a deep insight into characteristics of different single-phase PLLs, and therefore, can be considered as a reference for researchers and engineers.
[...]
TL;DR: In this paper, a modular energy management system and its integration to a grid-connected battery-based microgrid is presented, where a power generation-side strategy is defined as a general mixed-integer linear programming by taking into account two stages for proper charging of the storage units.
Abstract: Microgrids are energy systems that aggregate distributed energy resources, loads, and power electronics devices in a stable and balanced way. They rely on energy management systems to schedule optimally the distributed energy resources. Conventionally, many scheduling problems have been solved by using complex algorithms that, even so, do not consider the operation of the distributed energy resources. This paper presents the modeling and design of a modular energy management system and its integration to a grid-connected battery-based microgrid. The scheduling model is a power generation-side strategy, defined as a general mixed-integer linear programming by taking into account two stages for proper charging of the storage units. This model is considered as a deterministic problem that aims to minimize operating costs and promote self-consumption based on 24-hour ahead forecast data. The operation of the microgrid is complemented with a supervisory control stage that compensates any mismatch between the offline scheduling process and the real time microgrid operation. The proposal has been tested experimentally in a hybrid microgrid at the Microgrid Research Laboratory, Aalborg University.
[...]
TL;DR: In this article, an assembly HVDC breaker and the corresponding control strategy are proposed to overcome the drawbacks of dc-side short-circuit fault in MMC with half-bridge submodules.
Abstract: The modular multilevel converter (MMC) with half-bridge submodules (SMs) is the most promising technology for high-voltage direct current (HVDC) grids, but it lacks dc fault clearance capability. There are two main methods to handle the dc-side short-circuit fault. One is to employ the SMs that have dc fault clearance capability, but the power losses are high and the converter has to be blocked during the clearance. The other is to employ the hybrid HVDC breakers. The breaker is capable of interrupting fault current within 5 ms, but this technology is not cost effective, especially in meshed HVDC grids. In this paper, an assembly HVDC breaker and the corresponding control strategy are proposed to overcome these drawbacks. The assembly HVDC breaker consists of an active short-circuit breaker (ASCB), a main mechanical disconnector, a main breaker, and an accessory discharging switch (ADS). When a dc-side short-circuit fault occurs, the ASCB and the ADS close immediately to shunt the fault current. The main breaker opens after a short delay to isolate the faulted line from the system and then the mechanical disconnector opens. With the disconnector in open position, the ASCB opens and breaks the current. The proposed breaker can handle the dc-side fault with competitively low cost, and the operating speed is fast enough. A model of a four-terminal monopolar HVDC grid is developed in Power Systems Computer Aided Design / Electromagnetic Transients including DC, and the simulation result proves the validity and the feasibility of the proposed solution.
[...]
TL;DR: In this paper, a study of the stability of grid-connected inverters with high grid impedance based on impedance analysis is presented, where the effects of the PLL loop and the digital control delays on the output impedance characteristics have been taken into account.
Abstract: A power distribution grid exhibits the characteristics of a weak grid owing to the existence of scattered high-power distributed power-generation devices. The grid impedance affects the robust stability of grid-connected inverters, leading to harmonic resonance, or even instability in the system. Therefore, a study of the stability of grid-connected inverters with high grid impedance based on impedance analysis is presented in this paper. The output impedance modeling of an LCL -type single-phase grid-connected inverter is derived, where the effects of the PLL loop and the digital control delays on the output impedance characteristics have been taken into account. To enhance the stability of grid-connected inverters with different grid impedance, a novel impedance-phased compensation control strategy is proposed by increasing the phase margin of the grid-connected inverters. Specifically, a detailed implementation and parameter design of the impedance-phased compensation control method is depicted. Finally, an impedance-phased dynamic control scheme combined with online grid impedance measurement is introduced and also verified by the experiment results.
[...]
TL;DR: In this article, a new flower pollination algorithm (FPA) with the ability to reach global peak is proposed, which performs global and local search in single stage and it is a key tool for its success in MPPT application.
Abstract: To maximize solar photovoltaic (PV) output under dynamic weather conditions, maximum power point tracking (MPPT) controllers are incorporated in solar PV systems. However, the occurrence of multiple peaks due to partial shading adds complexity to the tracking process. Even though conventional and soft computing techniques are widely used to solve MPPT problem, conventional methods exhibit limited performance due to fixed step size, whereas soft computing techniques are restricted by insufficient randomness after reaching the vicinity of maximum power. Hence, in this paper, a new flower pollination algorithm (FPA) with the ability to reach global peak is proposed. Optimization process in FPA method performs global and local search in single stage and it is a key tool for its success in MPPT application. The ruggedness of the algorithm is tested with zero, weak, and strong shade pattern. Further, comprehensive performance estimation via simulation and hardware are carried out for FPA method and are quantified with conventional perturb and observe and particle swarm optimization (PSO) methods. Results obtained with FPA method show superiority in energy saving and proved to be economical.
[...]
TL;DR: In this paper, an adaptive H infinity filter approach is proposed to estimate the multistates including state of charge (SOC) and state of energy (SOE) for a lithium-ion battery pack.
Abstract: An adaptive H infinity filter approach is proposed to estimate the multistates including state of charge (SOC) and state of energy (SOE) for a lithium-ion battery pack. In the proposed approach, the covariance matching technique is used to adaptively update the covariance of system and observation noises and the recursive least square method is used to identify the battery model parameters in real time. The hardware-in-the-loop (HIL) platform for battery charge/discharge is set up to evaluate the accuracy and robustness of the SOC and the SOE estimation and compare the proposed approach with the multistate estimators using an extended Kalman filter and an H infinity filter. The experimental results indicate that the adaptive H infinity filter-based estimator is able to estimate the battery states in real time with the highest accuracy among the three filters.
[...]
TL;DR: Optimal gate drive conditions are proposed to provide sufficient gate over-drive to minimize the impact of the $V_{{\rm{TH}}}$ under switching operations.
Abstract: The systematic characterization of a 650-V/13-A enhancement-mode GaN power transistor with p-GaN gate is presented. Critical device parameters such as ON-resistance $R_{{\rm{ON}}}$ and threshold voltage $V_{{\rm{TH}}}$ are evaluated under both static and dynamic (i.e., switching) operating conditions. The dynamic R ON is found to exhibit different dependence on the gate drive voltage $V_{{\rm{GS}}}$ from the static $R_{{\rm{ON}}}$ . While reasonably suppressed at higher $V_{{\rm{GS}}}$ of 5 and 6 V, the degradation in dynamic R ON is significantly larger at lower $V_{{\rm{GS}}}$ of 3–4 V, which is attributed to the positive shift in $V_{{\rm{TH}}}$ under switching operations. In addition to characterization of discrete devices, a custom-designed double-pulse test circuit with 400-V, 10-A test capability is built to evaluate the transient switching performance of the p-GaN gate power transistors. Optimal gate drive conditions are proposed to: 1) provide sufficient gate over-drive to minimize the impact of the $V_{{\rm{TH}}}$ shift on the dynamic $R_{{\rm{ON}}}$ ; and 2) leave enough headroom to save the device from excessive gate stresses. Moreover, gate drive circuit design and board layout considerations are also discussed by taking into account the fast switching characteristics of GaN devices.
[...]
TL;DR: In this article, a maximum efficiency tracking control scheme for a closed-loop wireless power charging (WPC) system for wireless charging of mobile devices is presented. But the proposed system has the drawback of efficiency degradation.
Abstract: This paper presents a maximum efficiency tracking control scheme for a closed-loop wireless power charging (WPC) system for wireless charging of mobile devices. Generally, wireless charging systems need a precise output voltage and current with the highest possible efficiency. In an open-loop system, output voltage and efficiency depend strongly on the coupling coefficient and load condition. Alternatively, a closed-loop WPC system has a constant output voltage against coupling and load variations. Many studies have been carried out regarding closed-loop systems. However, those previous studies have the drawback of efficiency degradation. In this paper, we propose a maximum efficiency tracking control scheme to achieve the highest possible efficiency. Therefore, the proposed WPC system satisfies both the requirements of a constant output voltage and high efficiency. The proposed control scheme determines the current of the transmitter based on the data received by the receiver via Bluetooth. For validation, the proposed WPC system was implemented at 6.78 MHz using loosely coupled series–series resonant coils, and we verified that the proposed system can track the maximum efficiency while maintaining a constant output voltage.
[...]
TL;DR: In this paper, a centralized control architecture for local area power systems such as a small-scale microgrid is proposed, which is based on three supervisory control tasks which consider: active power curtailment of generation for avoiding overcharge of the storage units, load shedding actions for preventing deep discharge of the stored units, and equalization of the state of charge (SoC) among distributed storage systems for avoiding uneven degradation.
Abstract: The coordinated operation of distributed energy resources such as storage and generation units and also loads is required for the reliable operation of an islanded microgrid. Since in islanded microgrids the storage units are commonly responsible for regulating the voltage amplitude and frequency in the local power system, the coordination should consider safe operating limits for the stored energy, which prevents fast degradation or damage to the storage units. This paper proposes a centralized control architecture, applicable for local area power systems such as a small-scale microgrid. The centralized architecture is based on three supervisory control tasks which consider: active power curtailment of generation for avoiding overcharge of the storage units, load shedding actions for preventing deep discharge of the storage units, and equalization of the state of charge (SoC) among distributed storage systems for avoiding uneven degradation. The proposed equalization method has proved to be effective for equalizing the SoC of distributed energy storage systems and for ensuring uniform charge/discharge ratios regardless of differences in the capacity of the storage units. Additionally, the strategy is complemented with an optimal scheduling of load connection, which minimizes the connection and disconnection cycles of the loads within a time horizon of 24 h. The proposed architecture is verified experimentally in a lab-scale prototype of a microgrid, which has real communication between the microgrid and the central controller.
[...]
TL;DR: In this article, the authors compared the use of Si and SiC mosfets for a three-level T-type inverter operating in grid-tie applications and showed that replacing only the dc bus connection switches with SiC devices significantly reduced the semiconductor losses, allowing either the converter power level or the switching frequency to be significantly increased for the same device losses.
Abstract: It is well known that multilevel converters can offer significant benefits in terms of harmonic performance and reduced switching losses compared to their two-level counterparts. However, for lower voltage applications the neutral-point-clamped inverter suffers from relatively large semiconductor conduction losses because the output current always flows through two switching devices. In contrast, the T-type multilevel inverter has less conduction losses because only a single outer loop switching device is required to connect the converter output to the upper and lower dc buses, albeit at the expense of increased switching losses since these outer switches must now block the full dc link voltage. Silicon carbide (SiC) mosfet devices potentially offer substantial advantage in this context with their lower switching losses, but the benefit of replacing all switching devices in a T-type inverter with SiC mosfets is not so clear-cut. This paper now explores this issue by presenting a detailed comparison of the use of Si and SiC devices for a three-level T-type inverter operating in grid-tie applications. The study uses datasheet values, switching loss measurements, and calibrated heat sink thermal measurements to precisely compare semiconductor losses for these two alternatives for a T-type inverter operating at or near unity power factor. The results show that replacing only the dc bus connection switches with SiC devices significantly reduces the semiconductor losses, allowing either the converter power level or the switching frequency to be significantly increased for the same device losses. Hence, the use of SiC mosfets for T-type inverters can be seen to be an attractive and potentially cost-effective alternative, since only two switching devices per phase leg need to be upgraded.
[...]
TL;DR: In this article, a dual-bridge LLC resonant converter for wide input applications is proposed and the topology is an integration of a half-bridge (HB) LLC circuit and a full-bridge circuit.
Abstract: This paper proposes a dual-bridge (DB) LLC resonant converter for wide input applications. The topology is an integration of a half-bridge (HB) LLC circuit and a full-bridge (FB) LLC circuit. The fixed-frequency pulsewidth-modulated (PWM) control is employed and a range of twice the minimum input voltage can be covered. Compared with the traditional pulse frequency modulation (PFM) controlled HB/FB LLC resonant converter, the voltage gain range is independent of the quality factor, and the magnetizing inductor has little influence on the voltage gain, which can simplify the parameter selection process and benefit the design of magnetic components as well. Over the full load range, zero-voltage switching (ZVS) and zero-current switching (ZCS) can be achieved for primary switches and secondary rectifier diodes, respectively. Detailed analysis on the modulation schedule and operating principle of the proposed converter is presented along with the converter performance. Finally, all theoretical analysis and characteristics are verified by experimental results from a 120-V to 240-V input 24 V/20 A output converter prototype.
[...]
TL;DR: In this article, a Tripolar Pad (TPP) primary is evaluated for 3.3 kW power transfer to both a circular pad and a bipolar pad as secondary pads, and a mathematical model is presented to describe the power transfer from the TPP primary to the secondary pads then a control scheme is proposed which exploits the mutual decoupling between the TPP coils to find optimal primary currents.
Abstract: A recently proposed magnetic structure called Tripolar Pad (TPP) is investigated as a primary pad in an inductive power transfer battery charging system for electric vehicles. In this paper, a TPP primary is evaluated for 3.3 kW power transfer to both a circular pad and a bipolar pad as secondary pads. A mathematical model is presented to describe the power transfer from the TPP primary to the secondary pads then a control scheme is proposed which exploits the mutual decoupling between the TPP coils to find optimal primary currents. The optimization of the primary currents in the TPP improved the effective coupling factor over traditional topologies, particularly when the secondary was misaligned, and maintained leakage magnetic flux below International Commission on Non-Ionizing Radiation Protection guidelines. The result for the proposed TPP is validated with practical measurements.
[...]
TL;DR: A second-order-generalized-integrator (SOGI)-based time-delay compensation method for extending the stable region of a dual-loop grid-current-feedback (GCF) control system, proven through s-domain Bode diagrams and z -domain root loci.
Abstract: This paper proposes a second-order-generalized-integrator (SOGI)-based time-delay compensation method for extending the stable region of a dual-loop grid-current-feedback (GCF) control system. According to the analysis, stable region of the dual-loop system should be designed below a certain critical frequency, before time-delay compensation method can be applied. To always meet the requirement, relationship between single-loop converter-current-feedback and dual-loop GCF control is clarified, before a robust inner-loop gain for the dual-loop GCF scheme is determined. Enforcing this gain allows the converter to remain in its stable region, regardless of how its LCL -filter parameters and grid impedance vary. The SOGI-based delay compensation method can then be applied for widening the stable region of the dual-loop GCF scheme, as proven through s-domain Bode diagrams and z -domain root loci. These theoretical proofs are eventually validated by experimental results obtained in the laboratory.
[...]
TL;DR: In this article, the authors provide a full picture of the postfault derating in generic six-phase machines and a specific analysis of the fault-tolerant capability of the three mainstream sixphase induction machines (asymmetrical, symmetrical, and dual three phase).
Abstract: The fault tolerance of electric drives is highly appreciated at industry for security and economic reasons, and the inherent redundancy of six-phase machines provides the desired fault-tolerant capability with no extra hardware. For this reason some recent research efforts have been focused on the fault-tolerant design, modeling, and control of six-phase machines. Nevertheless, a unified and conclusive analysis of the postfault capability of six-phase machine is still missing. This paper provides a full picture of the postfault derating in generic six-phase machines and a specific analysis of the fault-tolerant capability of the three mainstream six-phase induction machines (asymmetrical, symmetrical, and dual three phase). Experimental results confirm the theoretical post fault current limits and allow concluding, which is the best six-phase machine for each fault scenario and neutral arrangement.
[...]
TL;DR: In this paper, a comparative study of V-I / I-I/I-V droop control approaches in dc microgrids focusing on steady-state power-sharing performance and stability is presented.
Abstract: Droop control has been widely applied in dc microgrids (MGs) due to its inherent modularity and ease of implementation Among the different droop control methods that can be adopted in dc MGs, two options have been considered in this paper: I – V and V – I droop I – V droop controls the dc current depending on the dc voltage while V – I droop regulates the dc voltage based on the output current The paper proposes a comparative study of V – I / I – V droop control approaches in dc MGs focusing on steady-state power-sharing performance and stability The paper presents the control scheme for current-mode ( I – V droop) and voltage-mode ( V – I droop) systems, derives the corresponding output impedance of the source subsystem, including converters dynamics, and analyzes the stability of the power system when supplying constant power loads The paper first investigates the impact on stability of the key parameters including droop gains, local control loop dynamics, and number of sources and then performs a comparison between current-mode and voltage-mode systems in terms of stability In addition, a generalized analytical impedance model of a multisource, multiload power system is presented to investigate stability in a more realistic scenario For this purpose, the paper proposes the concept of “global droop gain” as an important factor to determine the stability behaviour of a parallel sources based dc system The theoretical analysis has been validated with experimental results from a laboratory-scale dc MG
[...]
TL;DR: In this paper, the authors present a literature overview of power decoupling in single-phase applications and present the best reference on this topic, which can be implemented as series or parallel with respect to the ac, dc or link side.
Abstract: This paper presents a literature overview of all techniques proposed until the submission of this paper in terms of mitigating power oscillation in single-phase applications. This pulsating energy is the major factor for increasing the size of passive components and power losses in the converter and can be responsible for losses or malfunctioning of the dc sources. Reduction of power ripple at twice the fundamental frequency is one of the key elements to increase power converter density without lack of dc stiffness. Pulsation reduction is achieved by incorporating control techniques or auxiliary circuitries with energy storage capability in reactive elements to avoid this oscillating power to propagate through the converter, creating what is called as single-phase power decoupling. The topologies are divided as: rectifiers, inverters, and bidirectional. Among them, it is possible to classify as isolated and nonisolated converters. The energy storage method may be classify as: capacitive and inductive. For the power decoupling technique, it is convenient to divide as control and topology. The power decoupling technique may be implemented as series or parallel with respect to the ac, dc or link side. This paper represents the best reference on this topic.
[...]
TL;DR: In this paper, an inductive power transfer (IPT) charging method for electric bicycles is proposed to achieve constant current and constant voltage output without feedback control strategies or communication link between transmitter side and receiver side.
Abstract: It is more convenient and safer to employ inductive power transfer (IPT) systems to charge the battery pack of electric bicycles (EBs) than conventional plug-in systems. An IPT charging method suitable for charging massive EBs is proposed to achieve constant current (CC) and constant voltage (CV) output without feedback control strategies or communication link between transmitter side and receiver side. Two ac switches (ACSs) and an auxiliary capacitor utilized at receiver side are employed to be operated once to change the charging modes from CC mode to CV mode. The characteristics of the load-independent current output in the CC mode and load-independent voltage output in the CV mode are achieved by properly selecting the passive parameters of inductances and capacitors, so that no sophisticated control strategies are required to regulate the output as per the charging profile. The feasibility of proposed method has been verified with an experimental prototype in form of efficiency, stability of output current and voltage in CC/CV mode. The simple and economical approach is suitable for the massive EBs charging system with only one inverter, especially in China.
[...]
TL;DR: In this article, a three-phase hybrid cascaded modular multilevel inverter topology is derived from the proposed modified H-bridge module, which enables the tranformerless operation and enhances the power quality.
Abstract: This paper presents a three-phase hybrid cascaded modular multilevel inverter topology which is derived from the proposed modified H-bridge module. This topology results in the reduction of number of power switches, losses, installation area, voltage stress and converter cost. For renewable energy environment such as photovoltaic (PV) connected to the microgrid system, it enables the tranformerless operation and enhances the power quality. This multilevel inverter is an effective and efficient power electronic interface strategy for renewable energy systems. The basic operation of single module and the proposed cascaded hybrid topology is explained. The ability to operate in both symmetrical and asymmetrical modes is analyzed. The comparative analysis is done with classical cascaded H-bridge and flying capacitor multilevel inverters. The nearest level control method is employed to generate the gating signals for the power semiconductor switches. To verify the applicability and performance of the proposed structure in PV renewable energy environment, simulation results are carried out by MATLAB/Simulink under both steady-state and dynamic conditions. Experimental results are presented to validate the simulation results.
[...]
TL;DR: In this article, a model-based fault detection and identification (FDI) method for switching power converters using a modelbased state estimator approach is presented. But the proposed FDI approach is general in that it can be used to detect and identify arbitrary faults in components and sensors in a broad class of switches.
Abstract: We present the analysis, design, and experimental validation of a model-based fault detection and identification (FDI) method for switching power converters using a model-based state estimator approach. The proposed FDI approach is general in that it can be used to detect and identify arbitrary faults in components and sensors in a broad class of switching power converters. The FDI approach is experimentally demonstrated on a nanogrid prototype with a 380-V dc distribution bus. The nanogrid consists of four different switching power converters, including a buck converter, an interleaved boost converter, a single-phase rectifier, and a three-phase inverter. We construct a library of fault signatures for possible component and sensor faults in all four converters. The FDI algorithm successfully achieves fault detection in under 400 $\mu$ s and fault identification in under 10 ms for faults in each converter. The proposed FDI approach enables a flexible and scalable solution for improving fault tolerance and awareness in power electronics systems.
[...]
TL;DR: In this article, a family of higher order compensation circuits for IPT converters that achieves any desired constant-voltage or constant-current (CC) output with near zero reactive power and soft switching was proposed.
Abstract: Compensation is crucial for improving performance of inductive-power-transfer (IPT) converters. With proper compensation at some specific frequencies, an IPT converter can achieve load-independent constant output voltage or current, near zero reactive power, and soft switching of power switches simultaneously, resulting in simplified control circuitry, reduced component ratings, and improved power conversion efficiency. However, constant output voltage or current depends significantly on parameters of the transformer, which is often space constrained, making the converter design hard to optimize. To free the design from the constraints imposed by the transformer parameters, this paper proposes a family of higher order compensation circuits for IPT converters that achieves any desired constant-voltage or constant-current (CC) output with near zero reactive power and soft switching. Detailed derivation of the compensation method is given for the desired transfer function not constrained by transformer parameters. Prototypes of CC IPT configurations based on a single transformer are constructed to verify the analysis with three different output specifications.