scispace - formally typeset
Search or ask a question
JournalISSN: 0885-8950

IEEE Transactions on Power Systems 

Institute of Electrical and Electronics Engineers
About: IEEE Transactions on Power Systems is an academic journal published by Institute of Electrical and Electronics Engineers. The journal publishes majorly in the area(s): Electric power system & AC power. It has an ISSN identifier of 0885-8950. Over the lifetime, 11368 publications have been published receiving 841171 citations. The journal is also known as: Institute of Electrical and Electronics Engineers transactions on power systems & Transactions on power systems.


Papers
More filters
Journal ArticleDOI
TL;DR: The details of the network modeling and problem formulations used by MATPOWER, including its extensible OPF architecture, are presented, which are used internally to implement several extensions to the standard OPF problem, including piece-wise linear cost functions, dispatchable loads, generator capability curves, and branch angle difference limits.
Abstract: MATPOWER is an open-source Matlab-based power system simulation package that provides a high-level set of power flow, optimal power flow (OPF), and other tools targeted toward researchers, educators, and students. The OPF architecture is designed to be extensible, making it easy to add user-defined variables, costs, and constraints to the standard OPF problem. This paper presents the details of the network modeling and problem formulations used by MATPOWER, including its extensible OPF architecture. This structure is used internally to implement several extensions to the standard OPF problem, including piece-wise linear cost functions, dispatchable loads, generator capability curves, and branch angle difference limits. Simulation results are presented for a number of test cases comparing the performance of several available OPF solvers and demonstrating MATPOWER's ability to solve large-scale AC and DC OPF problems.

5,583 citations

Journal ArticleDOI
TL;DR: In this article, a Task Force, set up jointly by the CIGRE Study Committee 38 and the IEEE Power System Dynamic Performance Committee, addresses the issue of stability definition and classification in power systems from a fundamental viewpoint and closely examines the practical ramifications.
Abstract: The problem of defining and classifying power system stability has been addressed by several previous CIGRE and IEEE Task Force reports. These earlier efforts, however, do not completely reflect current industry needs, experiences and understanding. In particular, the definitions are not precise and the classifications do not encompass all practical instability scenarios. This report developed by a Task Force, set up jointly by the CIGRE Study Committee 38 and the IEEE Power System Dynamic Performance Committee, addresses the issue of stability definition and classification in power systems from a fundamental viewpoint and closely examines the practical ramifications. The report aims to define power system stability more precisely, provide a systematic basis for its classification, and discuss linkages to related issues such as power system reliability and security.

3,249 citations

Journal ArticleDOI
TL;DR: In this article, an enhanced test system (RTS-96) is described for use in bulk power system reliability evaluation studies, which will permit comparative and benchmark studies to be performed on new and existing reliability evaluation techniques.
Abstract: This report describes an enhanced test system (RTS-96) for use in bulk power system reliability evaluation studies. The value of the test system is that it will permit comparative and benchmark studies to be performed on new and existing reliability evaluation techniques. The test system was developed by modifying and updating the original IEEE RTS (referred to as RTS-79 hereafter) to reflect changes in evaluation methodologies and to overcome perceived deficiencies.

3,040 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a coordinated charging strategy to minimize the power losses and to maximize the main grid load factor of the plug-in hybrid electric vehicles (PHEVs).
Abstract: Alternative vehicles, such as plug-in hybrid electric vehicles, are becoming more popular The batteries of these plug-in hybrid electric vehicles are to be charged at home from a standard outlet or on a corporate car park These extra electrical loads have an impact on the distribution grid which is analyzed in terms of power losses and voltage deviations Without coordination of the charging, the vehicles are charged instantaneously when they are plugged in or after a fixed start delay This uncoordinated power consumption on a local scale can lead to grid problems Therefore, coordinated charging is proposed to minimize the power losses and to maximize the main grid load factor The optimal charging profile of the plug-in hybrid electric vehicles is computed by minimizing the power losses As the exact forecasting of household loads is not possible, stochastic programming is introduced Two main techniques are analyzed: quadratic and dynamic programming

2,601 citations

Journal ArticleDOI
TL;DR: In this article, the feasibility of control strategies to be adopted for the operation of a microgrid when it becomes isolated is evaluated and the need of storage devices and load shedding strategies is evaluated.
Abstract: This paper describes and evaluates the feasibility of control strategies to be adopted for the operation of a microgrid when it becomes isolated. Normally, the microgrid operates in interconnected mode with the medium voltage network; however, scheduled or forced isolation can take place. In such conditions, the microgrid must have the ability to operate stably and autonomously. An evaluation of the need of storage devices and load shedding strategies is included in this paper.

2,276 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023851
2022860
2021613
2020489
2019513
2018703