scispace - formally typeset
Search or ask a question

Showing papers in "IEEE Transactions on Signal Processing in 2010"


Journal ArticleDOI
TL;DR: A new array geometry, which is capable of significantly increasing the degrees of freedom of linear arrays, is proposed and a novel spatial smoothing based approach to DOA estimation is also proposed, which does not require the inherent assumptions of the traditional techniques based on fourth-order cumulants or quasi stationary signals.
Abstract: A new array geometry, which is capable of significantly increasing the degrees of freedom of linear arrays, is proposed. This structure is obtained by systematically nesting two or more uniform linear arrays and can provide O(N2) degrees of freedom using only N physical sensors when the second-order statistics of the received data is used. The concept of nesting is shown to be easily extensible to multiple stages and the structure of the optimally nested array is found analytically. It is possible to provide closed form expressions for the sensor locations and the exact degrees of freedom obtainable from the proposed array as a function of the total number of sensors. This cannot be done for existing classes of arrays like minimum redundancy arrays which have been used earlier for detecting more sources than the number of physical sensors. In minimum-input-minimum-output (MIMO) radar, the degrees of freedom are increased by constructing a longer virtual array through active sensing. The method proposed here, however, does not require active sensing and is capable of providing increased degrees of freedom in a completely passive setting. To utilize the degrees of freedom of the nested co-array, a novel spatial smoothing based approach to DOA estimation is also proposed, which does not require the inherent assumptions of the traditional techniques based on fourth-order cumulants or quasi stationary signals. As another potential application of the nested array, a new approach to beamforming based on a nonlinear preprocessing is also introduced, which can effectively utilize the degrees of freedom offered by the nested arrays. The usefulness of all the proposed methods is verified through extensive computer simulations.

1,478 citations


Journal ArticleDOI
TL;DR: Novel system designs are proposed, consisting of the determination of relay weights and the allocation of transmit power, that maximize the achievable secrecy rate subject to a transmit power constraint, or minimize the transmit powersubject to a secrecy rate constraint.
Abstract: Physical (PHY) layer security approaches for wireless communications can prevent eavesdropping without upper layer data encryption. However, they are hampered by wireless channel conditions: absent feedback, they are typically feasible only when the source-destination channel is better than the source-eavesdropper channel. Node cooperation is a means to overcome this challenge and improve the performance of secure wireless communications. This paper addresses secure communications of one source-destination pair with the help of multiple cooperating relays in the presence of one or more eavesdroppers. Three cooperative schemes are considered: decode-and-forward (DF), amplify-and-forward (AF), and cooperative jamming (CJ). For these schemes, the relays transmit a weighted version of a reencoded noise-free message signal (for DF), a received noisy source signal (for AF), or a common jamming signal (for CJ). Novel system designs are proposed, consisting of the determination of relay weights and the allocation of transmit power, that maximize the achievable secrecy rate subject to a transmit power constraint, or, minimize the transmit power subject to a secrecy rate constraint. For DF in the presence of one eavesdropper, closed-form optimal solutions are derived for the relay weights. For other problems, since the optimal relay weights are difficult to obtain, several criteria are considered leading to suboptimal but simple solutions, i.e., the complete nulling of the message signals at all eavesdroppers (for DF and AF), or the complete nulling of jamming signal at the destination (for CJ). Based on the designed relay weights, for DF in the presence of multiple eavesdroppers, and for CJ in the presence of one eavesdropper, the optimal power allocation is obtained in closed-form; in all other cases the optimal power allocation is obtained via iterative algorithms. Numerical evaluation of the obtained secrecy rate and transmit power results show that the proposed design can significantly improve the performance of secure wireless communications.

1,385 citations


Journal ArticleDOI
TL;DR: The significance of the results presented in this paper lies in the fact that making explicit use of block-sparsity can provably yield better reconstruction properties than treating the signal as being sparse in the conventional sense, thereby ignoring the additional structure in the problem.
Abstract: We consider efficient methods for the recovery of block-sparse signals-ie, sparse signals that have nonzero entries occurring in clusters-from an underdetermined system of linear equations An uncertainty relation for block-sparse signals is derived, based on a block-coherence measure, which we introduce We then show that a block-version of the orthogonal matching pursuit algorithm recovers block -sparse signals in no more than steps if the block-coherence is sufficiently small The same condition on block-coherence is shown to guarantee successful recovery through a mixed -optimization approach This complements previous recovery results for the block-sparse case which relied on small block-restricted isometry constants The significance of the results presented in this paper lies in the fact that making explicit use of block-sparsity can provably yield better reconstruction properties than treating the signal as being sparse in the conventional sense, thereby ignoring the additional structure in the problem

1,289 citations


Journal ArticleDOI
TL;DR: This work motivates and proposes new versions of the diffusion LMS algorithm that outperform previous solutions, and provides performance and convergence analysis of the proposed algorithms, together with simulation results comparing with existing techniques.
Abstract: We consider the problem of distributed estimation, where a set of nodes is required to collectively estimate some parameter of interest from noisy measurements. The problem is useful in several contexts including wireless and sensor networks, where scalability, robustness, and low power consumption are desirable features. Diffusion cooperation schemes have been shown to provide good performance, robustness to node and link failure, and are amenable to distributed implementations. In this work we focus on diffusion-based adaptive solutions of the LMS type. We motivate and propose new versions of the diffusion LMS algorithm that outperform previous solutions. We provide performance and convergence analysis of the proposed algorithms, together with simulation results comparing with existing techniques. We also discuss optimization schemes to design the diffusion LMS weights.

1,116 citations


Journal ArticleDOI
TL;DR: This work explores the feasibility of interference alignment in signal vector space-based only on beamforming-for K-user MIMO interference channels and shows that the connection between feasible and proper systems can be further strengthened by including standard information theoretic outer bounds in the feasibility analysis.
Abstract: We explore the feasibility of interference alignment in signal vector space-based only on beamforming-for K-user MIMO interference channels. Our main contribution is to relate the feasibility issue to the problem of determining the solvability of a multivariate polynomial system which is considered extensively in algebraic geometry. It is well known, e.g., from Bezout's theorem, that generic polynomial systems are solvable if and only if the number of equations does not exceed the number of variables. Following this intuition, we classify signal space interference alignment problems as either proper or improper based on the number of equations and variables. Rigorous connections between feasible and proper systems are made through Bernshtein's theorem for the case where each transmitter uses only one beamforming vector. The multibeam case introduces dependencies among the coefficients of a polynomial system so that the system is no longer generic in the sense required by both theorems. In this case, we show that the connection between feasible and proper systems can be further strengthened (since the equivalency between feasible and proper systems does not always hold) by including standard information theoretic outer bounds in the feasibility analysis.

784 citations


Journal ArticleDOI
TL;DR: The advantages of sparse dictionaries are discussed, and an efficient algorithm for training them are presented, and the advantages of the proposed structure for 3-D image denoising are demonstrated.
Abstract: An efficient and flexible dictionary structure is proposed for sparse and redundant signal representation. The proposed sparse dictionary is based on a sparsity model of the dictionary atoms over a base dictionary, and takes the form D = ? A, where ? is a fixed base dictionary and A is sparse. The sparse dictionary provides efficient forward and adjoint operators, has a compact representation, and can be effectively trained from given example data. In this, the sparse structure bridges the gap between implicit dictionaries, which have efficient implementations yet lack adaptability, and explicit dictionaries, which are fully adaptable but non-efficient and costly to deploy. In this paper, we discuss the advantages of sparse dictionaries, and present an efficient algorithm for training them. We demonstrate the advantages of the proposed structure for 3-D image denoising.

647 citations


Journal ArticleDOI
TL;DR: Conditions under which strong duality holds and efficient algorithms for the optimal beamforming problem are given and rank reduction procedures to achieve a lower rank solution are proposed.
Abstract: Consider a downlink communication system where multiantenna base stations transmit independent data streams to decentralized single-antenna users over a common frequency band. The goal of the base stations is to jointly adjust the beamforming vectors to minimize the transmission powers while ensuring the signal-to-interference-noise ratio requirement of each user within the system. At the same time, it may be necessary to keep the interference generated on other coexisting systems under a certain tolerable level. In addition, one may want to include general individual shaping constraints on the beamforming vectors. This beamforming problem is a separable homogeneous quadratically constrained quadratic program, and it is difficult to solve in general. In this paper, we give conditions under which strong duality holds and propose efficient algorithms for the optimal beamforming problem. First, we study rank-constrained solutions of general separable semidefinite programs (SDPs) and propose rank reduction procedures to achieve a lower rank solution. Then we show that the SDP relaxation of three classes of optimal beamforming problem always has a rank-one solution, which can be obtained by invoking the rank reduction procedures.

559 citations


Journal ArticleDOI
TL;DR: Three novel algorithms to estimate the regression coefficients via Lasso when the training data are distributed across different agents, and their communication to a central processing unit is prohibited for e.g., communication cost or privacy reasons are developed.
Abstract: The Lasso is a popular technique for joint estimation and continuous variable selection, especially well-suited for sparse and possibly under-determined linear regression problems. This paper develops algorithms to estimate the regression coefficients via Lasso when the training data are distributed across different agents, and their communication to a central processing unit is prohibited for e.g., communication cost or privacy reasons. A motivating application is explored in the context of wireless communications, whereby sensing cognitive radios collaborate to estimate the radio-frequency power spectrum density. Attaining different tradeoffs between complexity and convergence speed, three novel algorithms are obtained after reformulating the Lasso into a separable form, which is iteratively minimized using the alternating-direction method of multipliers so as to gain the desired degree of parallelization. Interestingly, the per agent estimate updates are given by simple soft-thresholding operations, and inter-agent communication overhead remains at affordable level. Without exchanging elements from the different training sets, the local estimates consent to the global Lasso solution, i.e., the fit that would be obtained if the entire data set were centrally available. Numerical experiments with both simulated and real data demonstrate the merits of the proposed distributed schemes, corroborating their convergence and global optimality. The ideas in this paper can be easily extended for the purpose of fitting related models in a distributed fashion, including the adaptive Lasso, elastic net, fused Lasso and nonnegative garrote.

514 citations


Journal ArticleDOI
TL;DR: A cooperative approach to the sensing task of wireless cognitive radio (CR) networks is introduced based on a basis expansion model of the power spectral density map in space and frequency that reduces spatial and frequency spectrum leakage by 15 dB relative to least-squares alternatives.
Abstract: A cooperative approach to the sensing task of wireless cognitive radio (CR) networks is introduced based on a basis expansion model of the power spectral density (PSD) map in space and frequency. Joint estimation of the model parameters enables identification of the (un)used frequency bands at arbitrary locations, and thus facilitates spatial frequency reuse. The novel scheme capitalizes on two forms of sparsity: the first one introduced by the narrow-band nature of transmit-PSDs relative to the broad swaths of usable spectrum; and the second one emerging from sparsely located active radios in the operational space. An estimator of the model coefficients is developed based on the Lasso algorithm to exploit these forms of sparsity and reveal the unknown positions of transmitting CRs. The resultant scheme can be implemented via distributed online iterations, which solve quadratic programs locally (one per radio), and are adaptive to changes in the system. Simulations corroborate that exploiting sparsity in CR sensing reduces spatial and frequency spectrum leakage by 15 dB relative to least-squares (LS) alternatives.

499 citations


Journal ArticleDOI
TL;DR: Results indicate that the CD-CKF markedly outperforms existing continuous-discrete filters in the context of radar in two respects- high dimensionality of the state and increasing degree of nonlinearity.
Abstract: In this paper, we extend the cubature Kalman filter (CKF) to deal with nonlinear state-space models of the continuous-discrete kind. To be consistent with the literature, the resulting nonlinear filter is referred to as the continuous-discrete cubature Kalman filter (CD-CKF). We use the Ito-Taylor expansion of order 1.5 to transform the process equation, modeled in the form of stochastic ordinary differential equations, into a set of stochastic difference equations. Building on this transformation and assuming that all conditional densities are Gaussian-distributed, the solution to the Bayesian filter reduces to the problem of how to compute Gaussian-weighted integrals. To numerically compute the integrals, we use the third-degree cubature rule. For a reliable implementation of the CD-CKF in a finite word-length machine, it is structurally modified to propagate the square-roots of the covariance matrices. The reliability and accuracy of the square-root version of the CD-CKF are tested in a case study that involves the use of a radar problem of practical significance; the problem considered herein is challenging in the context of radar in two respects- high dimensionality of the state and increasing degree of nonlinearity. The results, presented herein, indicate that the CD-CKF markedly outperforms existing continuous-discrete filters.

494 citations


Journal ArticleDOI
TL;DR: It is shown that the minimum system regret of the decentralized MAB grows with time at the same logarithmic order as in the centralized counterpart where players act collectively as a single entity by exchanging observations and making decisions jointly.
Abstract: We formulate and study a decentralized multi-armed bandit (MAB) problem. There are M distributed players competing for N independent arms. Each arm, when played, offers i.i.d. reward according to a distribution with an unknown parameter. At each time, each player chooses one arm to play without exchanging observations or any information with other players. Players choosing the same arm collide, and, depending on the collision model, either no one receives reward or the colliding players share the reward in an arbitrary way. We show that the minimum system regret of the decentralized MAB grows with time at the same logarithmic order as in the centralized counterpart where players act collectively as a single entity by exchanging observations and making decisions jointly. A decentralized policy is constructed to achieve this optimal order while ensuring fairness among players and without assuming any pre-agreement or information exchange among players. Based on a time-division fair sharing (TDFS) of the M best arms, the proposed policy is constructed and its order optimality is proven under a general reward model. Furthermore, the basic structure of the TDFS policy can be used with any order-optimal single-player policy to achieve order optimality in the decentralized setting. We also establish a lower bound on the system regret for a general class of decentralized polices, to which the proposed policy belongs. This problem finds potential applications in cognitive radio networks, multi-channel communication systems, multi-agent systems, web search and advertising, and social networks.

Journal ArticleDOI
TL;DR: In this paper, a two-state mixture Gaussian model is used to perform asymptotically optimal Bayesian inference using belief propagation decoding, which represents the CS encoding matrix as a graphical model.
Abstract: Compressive sensing (CS) is an emerging field based on the revelation that a small collection of linear projections of a sparse signal contains enough information for stable, sub-Nyquist signal acquisition When a statistical characterization of the signal is available, Bayesian inference can complement conventional CS methods based on linear programming or greedy algorithms We perform asymptotically optimal Bayesian inference using belief propagation (BP) decoding, which represents the CS encoding matrix as a graphical model Fast computation is obtained by reducing the size of the graphical model with sparse encoding matrices To decode a length-N signal containing K large coefficients, our CS-BP decoding algorithm uses O(K log(N)) measurements and O(N log2(N)) computation Finally, although we focus on a two-state mixture Gaussian model, CS-BP is easily adapted to other signal models

Journal ArticleDOI
TL;DR: This work improves on the Ledoit-Wolf method by conditioning on a sufficient statistic, and proposes an iterative approach which approximates the clairvoyant shrinkage estimator, referred to as the oracle approximating shrinkage (OAS) estimator.
Abstract: We address covariance estimation in the sense of minimum mean-squared error (MMSE) when the samples are Gaussian distributed. Specifically, we consider shrinkage methods which are suitable for high dimensional problems with a small number of samples (large p small n). First, we improve on the Ledoit-Wolf (LW) method by conditioning on a sufficient statistic. By the Rao-Blackwell theorem, this yields a new estimator called RBLW, whose mean-squared error dominates that of LW for Gaussian variables. Second, to further reduce the estimation error, we propose an iterative approach which approximates the clairvoyant shrinkage estimator. Convergence of this iterative method is established and a closed form expression for the limit is determined, which is referred to as the oracle approximating shrinkage (OAS) estimator. Both RBLW and OAS estimators have simple expressions and are easily implemented. Although the two methods are developed from different perspectives, their structure is identical up to specified constants. The RBLW estimator provably dominates the LW method for Gaussian samples. Numerical simulations demonstrate that the OAS approach can perform even better than RBLW, especially when n is much less than p . We also demonstrate the performance of these techniques in the context of adaptive beamforming.

Journal ArticleDOI
TL;DR: The recursive least squares dictionary learning algorithm, RLS-DLA, is presented, which can be used for learning overcomplete dictionaries for sparse signal representation and a forgetting factor can be introduced and easily implemented in the algorithm.
Abstract: We present the recursive least squares dictionary learning algorithm, RLS-DLA, which can be used for learning overcomplete dictionaries for sparse signal representation. Most DLAs presented earlier, for example ILS-DLA and K-SVD, update the dictionary after a batch of training vectors has been processed, usually using the whole set of training vectors as one batch. The training set is used iteratively to gradually improve the dictionary. The approach in RLS-DLA is a continuous update of the dictionary as each training vector is being processed. The core of the algorithm is compact and can be effectively implemented. The algorithm is derived very much along the same path as the recursive least squares (RLS) algorithm for adaptive filtering. Thus, as in RLS, a forgetting factor ? can be introduced and easily implemented in the algorithm. Adjusting ? in an appropriate way makes the algorithm less dependent on the initial dictionary and it improves both convergence properties of RLS-DLA as well as the representation ability of the resulting dictionary. Two sets of experiments are done to test different methods for learning dictionaries. The goal of the first set is to explore some basic properties of the algorithm in a simple setup, and for the second set it is the reconstruction of a true underlying dictionary. The first experiment confirms the conjectural properties from the derivation part, while the second demonstrates excellent performance.

Journal ArticleDOI
TL;DR: Substantial improvements offered by the proposed phased-MIMO radar technique are demonstrated analytically and by simulations through analyzing the corresponding beam patterns and the achievable output signal-to-noise-plus-interference ratios.
Abstract: We propose a new technique for multiple-input multiple-output (MIMO) radar with colocated antennas which we call phased-MIMO radar. The new technique enjoys the advantages of the MIMO radar without sacrificing the main advantage of the phased-array radar which is the coherent processing gain at the transmitting side. The essence of the proposed technique is to partition the transmit array into a number of subarrays that are allowed to overlap. Then, each subarray is used to coherently transmit a waveform which is orthogonal to the waveforms transmitted by other subarrays. Coherent processing gain can be achieved by designing a weight vector for each subarray to form a beam towards a certain direction in space. Moreover, the subarrays are combined jointly to form a MIMO radar resulting in higher angular resolution capabilities. Substantial improvements offered by the proposed phased-MIMO radar technique as compared to the phased-array and MIMO radar techniques are demonstrated analytically and by simulations through analyzing the corresponding beam patterns and the achievable output signal-to-noise-plus-interference ratios. Both analytical and simulation results validate the effectiveness of the proposed phased-MIMO radar.

Journal ArticleDOI
TL;DR: This paper considers the design of the analog and digital beamforming coefficients, for the case of narrowband signals, and proposes the optimal analog beamformer to minimize the mean squared error between the desired user and its receiver estimate.
Abstract: In multiple-input multiple-output (MIMO) systems, the use of many radio frequency (RF) and analog-to-digital converter (ADC) chains at the receiver is costly. Analog beamformers operating in the RF domain can reduce the number of antenna signals to a feasible number of baseband channels. Subsequently, digital beamforming is used to capture the desired user signal. In this paper, we consider the design of the analog and digital beamforming coefficients, for the case of narrowband signals. We aim to cancel interfering signals in the analog domain, thus minimizing the required ADC resolution. For a given resolution, we will propose the optimal analog beamformer to minimize the mean squared error between the desired user and its receiver estimate. Practical analog beamformers employ only a quantized number of phase shifts. For this case, we propose a design technique to successively approximate the desired overall beamformer by a linear combination of implementable analog beamformers. Finally, an online channel estimation technique is introduced to estimate the required statistics of the wireless channel on which the optimal beamformers are based.

Journal ArticleDOI
TL;DR: In this article, the authors studied the problem of distributed average consensus in sensor networks with quantized data and random link failures. But their work was restricted to the case where the quantizer range is unbounded.
Abstract: The paper studies the problem of distributed average consensus in sensor networks with quantized data and random link failures. To achieve consensus, dither (small noise) is added to the sensor states before quantization. When the quantizer range is unbounded (countable number of quantizer levels), stochastic approximation shows that consensus is asymptotically achieved with probability one and in mean square to a finite random variable. We show that the mean-squared error (mse) can be made arbitrarily small by tuning the link weight sequence, at a cost of the convergence rate of the algorithm. To study dithered consensus with random links when the range of the quantizer is bounded, we establish uniform boundedness of the sample paths of the unbounded quantizer. This requires characterization of the statistical properties of the supremum taken over the sample paths of the state of the quantizer. This is accomplished by splitting the state vector of the quantizer in two components: one along the consensus subspace and the other along the subspace orthogonal to the consensus subspace. The proofs use maximal inequalities for submartingale and supermartingale sequences. From these, we derive probability bounds on the excursions of the two subsequences, from which probability bounds on the excursions of the quantizer state vector follow. The paper shows how to use these probability bounds to design the quantizer parameters and to explore tradeoffs among the number of quantizer levels, the size of the quantization steps, the desired probability of saturation, and the desired level of accuracy ? away from consensus. Finally, the paper illustrates the quantizer design with a numerical study.

Journal ArticleDOI
TL;DR: A multi-object filter suitable for image observations with low signal-to-noise ratio (SNR) is developed and a particle implementation of the multi- object filter is proposed and demonstrated via simulations.
Abstract: The problem of jointly detecting multiple objects and estimating their states from image observations is formulated in a Bayesian framework by modeling the collection of states as a random finite set. Analytic characterizations of the posterior distribution of this random finite set are derived for various prior distributions under the assumption that the regions of the observation influenced by individual objects do not overlap. These results provide tractable means to jointly estimate the number of states and their values from image observations. As an application, we develop a multi-object filter suitable for image observations with low signal-to-noise ratio (SNR). A particle implementation of the multi-object filter is proposed and demonstrated via simulations.

Journal ArticleDOI
TL;DR: The generalized diversity gain is derived and it is shown that, with a guaranteed primary outage probability, the full diversity order is achieved using the proposed adaptive cooperation scheme.
Abstract: In this correspondence, an adaptive cooperation diversity scheme with best-relay selection is proposed for multiple-relay cognitive radio networks to improve the performance of secondary transmissions while ensuring the quality of service (QoS) of primary transmissions. Exact closed-form expressions of the outage probability of secondary transmissions, referred to as secondary outage probability, are derived under the constraint of satisfying a required outage probability of primary transmissions (primary outage probability) for both the traditional non-cooperation and the proposed adaptive cooperation schemes over Rayleigh fading channels. Numerical and simulation results show that, with a guaranteed primary outage probability, a floor of the secondary outage probability occurs in high signal-to-noise ratio (SNR) regions. Moreover, the outage probability floor of the adaptive cooperation scheme is lower than that of the non-cooperation scenario, which illustrates the advantage of the proposed scheme. In addition, we generalize the traditional definition of the diversity gain, which can not be applied directly in cognitive radio networks since mutual interference between the primary and secondary users should be considered. We derive the generalized diversity gain and show that, with a guaranteed primary outage probability, the full diversity order is achieved using the proposed adaptive cooperation scheme.

Journal ArticleDOI
TL;DR: This work analyzes the case of distributed cooperation where each base station has only local CSI, either instantaneous or statistical, and justifies distributed precoding design based on a novel virtual signal-to-interference noise ratio (SINR) framework.
Abstract: Base station cooperation is an attractive way of increasing the spectral efficiency in multiantenna communication. By serving each terminal through several base stations in a given area, intercell interference can be coordinated and higher performance achieved, especially for terminals at cell edges. Most previous work in the area has assumed that base stations have common knowledge of both data dedicated to all terminals and full or partial channel state information (CSI) of all links. Herein, we analyze the case of distributed cooperation where each base station has only local CSI, either instantaneous or statistical. In the case of instantaneous CSI, the beamforming vectors that can attain the outer boundary of the achievable rate region are characterized for an arbitrary number of multiantenna transmitters and single-antenna receivers. This characterization only requires local CSI and justifies distributed precoding design based on a novel virtual signal-to-interference noise ratio (SINR) framework, which can handle an arbitrary SNR and achieves the optimal multiplexing gain. The local power allocation between terminals is solved heuristically. Conceptually, analogous results for the achievable rate region characterization and precoding design are derived in the case of local statistical CSI. The benefits of distributed cooperative transmission are illustrated numerically, and it is shown that most of the performance with centralized cooperation can be obtained using only local CSI.

Journal ArticleDOI
TL;DR: This paper considers a relay network which consists of two single-antenna transceivers and nr single-Antenna relay nodes, and studies two different approaches at optimally calculating the beamforming coefficients as well as the transceiver transmit powers.
Abstract: In this paper, we consider a relay network which consists of two single-antenna transceivers and nr single-antenna relay nodes. Considering a two time slot two-way relaying scheme, each relay adjusts the phase and the amplitude of the mixture signal it receives from the two transceivers during the first time slot, by multiplying it with a complex beamforming coefficient. Then each relay transmits the so-obtained signal in the second time slot. Aiming at optimally calculating the beamforming coefficients as well as the transceiver transmit powers, we study two different approaches. In the first approach, we minimize the total transmit power (dissipated in the whole network) subject to two constraints on the transceivers' received signal-to-noise ratios (SNRs). We prove that such a power minimization technique has a unique solution. We also show that the optimal weight vector can be obtained through a simple iterative algorithm which enjoys a linear computational complexity per iteration. We also prove that for symmetric relaying schemes (where the two constraints on the transceiver SNRs are the same), half of the minimum total transmit power will be allocated to the two transceivers and the remaining half will be shared among the relaying nodes. In the second approach, we will study an SNR balancing technique. In this technique, the smaller of the two transceiver SNRs is maximized while the total transmit power is kept below a certain power budget. We show that this problem has also a unique solution which can be obtained through an iterative procedure with a linear computational complexity per iteration. We also prove that this approach leads to a power allocation scheme, where half of the maximum power budget is allocated to the two transceivers and the remaining half will be shared among all the relay nodes. For both approaches, we devise distributed schemes which require a minimal cooperation among the two transceivers and the relays. In fact, we show that both techniques can be implemented such that the bandwidth, required to obtain the beamforming weights in a distributed manner, remains constant as the size of the network grows.

Journal ArticleDOI
TL;DR: It is shown that each Pareto-boundary rate-tuple of the MISO-IC can be achieved in a decentralized manner when each of the BSs attains its own channel capacity subject to a certain set of interference-power constraints at the other MS receivers.
Abstract: In this correspondence, we study the downlink transmission in a multi-cell system, where multiple base stations (BSs) each with multiple antennas cooperatively design their respective transmit beamforming vectors to optimize the overall system performance. For simplicity, it is assumed that all mobile stations (MSs) are equipped with a single antenna each, and there is one active MS in each cell at one time. Accordingly, the system of interests can be modeled by a multiple-input single-output (MISO) Gaussian interference channel (IC), termed as MISO-IC, with interference treated as noise. We propose a new method to characterize different rate-tuples for active MSs on the Pareto boundary of the achievable rate region for the MISO-IC, by exploring the relationship between the MISO-IC and the cognitive radio (CR) MISO channel. We show that each Pareto-boundary rate-tuple of the MISO-IC can be achieved in a decentralized manner when each of the BSs attains its own channel capacity subject to a certain set of interference-power constraints (also known as interference-temperature constraints in the CR system) at the other MS receivers. Furthermore, we show that this result leads to a new decentralized algorithm for implementing the multi-cell cooperative downlink beamforming.

Journal ArticleDOI
TL;DR: Numerical results show that the proposed multiuser two-way relay processing can efficiently eliminate both co-channel interference (CCI) and self-interference (SI).
Abstract: In this paper, multiple-input multiple-output (MIMO) relay transceiver processing is proposed for multiuser two-way relay communications. The relay processing is optimized based on both zero-forcing (ZF) and minimum mean-square-error (MMSE) criteria under relay power constraints. Various transmit and receive beamforming methods are compared including eigen beamforming, antenna selection, random beamforming, and modified equal gain beamforming. Local and global power control methods are designed to achieve fairness among all users and to maximize the system signal-to-noise ratio (SNR). Numerical results show that the proposed multiuser two-way relay processing can efficiently eliminate both co-channel interference (CCI) and self-interference (SI).

Journal ArticleDOI
TL;DR: Simulation results show that the diffusion L MS algorithm with the proposed adaptive combiners outperforms those with existing static combiners and the incremental LMS algorithm, and that the theoretical analysis provides a good approximation of practical performance.
Abstract: This paper presents an efficient adaptive combination strategy for the distributed estimation problem over diffusion networks in order to improve robustness against the spatial variation of signal and noise statistics over the network. The concept of minimum variance unbiased estimation is used to derive the proposed adaptive combiner in a systematic way. The mean, mean-square, and steady-state performance analyses of the diffusion least-mean squares (LMS) algorithms with adaptive combiners are included and the stability of convex combination rules is proved. Simulation results show (i) that the diffusion LMS algorithm with the proposed adaptive combiners outperforms those with existing static combiners and the incremental LMS algorithm, and (ii) that the theoretical analysis provides a good approximation of practical performance.

Journal ArticleDOI
TL;DR: A robust filter in a batch-mode regression form to process the observations and predictions together, making it very effective in suppressing multiple outliers, and results revealed that this filter compares favorably with the H¿-filter in the presence of outliers.
Abstract: A new robust Kalman filter is proposed that detects and bounds the influence of outliers in a discrete linear system, including those generated by thick-tailed noise distributions such as impulsive noise. Besides outliers induced in the process and observation noises, we consider in this paper a new type called structural outliers. For a filter to be able to counter the effect of these outliers, observation redundancy in the system is necessary. We have therefore developed a robust filter in a batch-mode regression form to process the observations and predictions together, making it very effective in suppressing multiple outliers. A key step in this filter is a new prewhitening method that incorporates a robust multivariate estimator of location and covariance. The other main step is the use of a generalized maximum likelihood-type (GM) estimator based on Schweppe's proposal and the Huber function, which has a high statistical efficiency at the Gaussian distribution and a positive breakdown point in regression. The latter is defined as the largest fraction of contamination for which the estimator yields a finite maximum bias under contamination. This GM-estimator enables our filter to bound the influence of residual and position, where the former measures the effects of observation and innovation outliers and the latter assesses that of structural outliers. The estimator is solved via the iteratively reweighted least squares (IRLS) algorithm, in which the residuals are standardized utilizing robust weights and scale estimates. Finally, the state estimation error covariance matrix of the proposed GM-Kalman filter is derived from its influence function. Simulation results revealed that our filter compares favorably with the H?-filter in the presence of outliers.

Journal ArticleDOI
TL;DR: Tensor algebra and multidimensional HR are shown to be central for target localization in a variety of pertinent MIMO radar scenarios, and compared to the classical radar-imaging-based methods such as Capon or MUSIC, these algebraic techniques yield improved performance, especially for closely spaced targets, at modest complexity.
Abstract: Detection and estimation problems in multiple-input multiple-output (MIMO) radar have recently drawn considerable interest in the signal processing community. Radar has long been a staple of signal processing, and MIMO radar presents challenges and opportunities in adapting classical radar imaging tools and developing new ones. Our aim in this article is to showcase the potential of tensor algebra and multidimensional harmonic retrieval (HR) in signal processing for MIMO radar. Tensor algebra and multidimensional HR are relatively mature topics, albeit still on the fringes of signal processing research. We show they are in fact central for target localization in a variety of pertinent MIMO radar scenarios. Tensor algebra naturally comes into play when the coherent processing interval comprises multiple pulses, or multiple transmit and receive subarrays are used (multistatic configuration). Multidimensional harmonic structure emerges for far-field uniform linear transmit/receive array configurations, also taking into account Doppler shift; and hybrid models arise in-between. This viewpoint opens the door for the application and further development of powerful algorithms and identifiability results for MIMO radar. Compared to the classical radar-imaging-based methods such as Capon or MUSIC, these algebraic techniques yield improved performance, especially for closely spaced targets, at modest complexity.

Journal ArticleDOI
TL;DR: A novel time-weighted Lasso (TWL) scheme with ℓ1-norm weights obtained from the recursive least-squares (RLS) algorithm is developed to cope with high complexity, increasing memory requirements, and lack of tracking capability that batch Lasso estimators face when processing observations sequentially.
Abstract: Using the l1-norm to regularize the least-squares criterion, the batch least-absolute shrinkage and selection operator (Lasso) has well-documented merits for estimating sparse signals of interest emerging in various applications where observations adhere to parsimonious linear regression models. To cope with high complexity, increasing memory requirements, and lack of tracking capability that batch Lasso estimators face when processing observations sequentially, the present paper develops a novel time-weighted Lasso (TWL) approach. Performance analysis reveals that TWL cannot estimate consistently the desired signal support without compromising rate of convergence. This motivates the development of a time- and norm-weighted Lasso (TNWL) scheme with l1-norm weights obtained from the recursive least-squares (RLS) algorithm. The resultant algorithm consistently estimates the support of sparse signals without reducing the convergence rate. To cope with sparsity-aware recursive real-time processing, novel adaptive algorithms are also developed to enable online coordinate descent solvers of TWL and TNWL that provably converge to the true sparse signal in the time-invariant case. Simulated tests compare competing alternatives and corroborate the performance of the novel algorithms in estimating time-invariant signals, and tracking time-varying signals under sparsity constraints.

Journal ArticleDOI
TL;DR: This work demonstrates how the direction-of-arrival (DOA) estimation problem can be cast as the problem of recovering a joint-sparse representation and proposes to minimize a mixed ℓ2,0 norm approximation to deal with the joint-Sparse recovery problem.
Abstract: A set of vectors is called jointly sparse when its elements share a common sparsity pattern. We demonstrate how the direction-of-arrival (DOA) estimation problem can be cast as the problem of recovering a joint-sparse representation. We consider both narrowband and broadband scenarios. We propose to minimize a mixed l2,0 norm approximation to deal with the joint-sparse recovery problem. Our algorithm can resolve closely spaced and highly correlated sources using a small number of noisy snapshots. Furthermore, the number of sources need not be known a priori. In addition, our algorithm can handle more sources than other state-of-the-art algorithms. For the broadband DOA estimation problem, our algorithm allows relaxing the half-wavelength spacing restriction, which leads to a significant improvement in the resolution limit.

Journal ArticleDOI
TL;DR: It is shown under which conditions training sequences that minimize the non-convex MSE can be derived explicitly or with low complexity, and it is proved that spatial correlation improves the estimation performance and establish how it determines the optimal training sequence length.
Abstract: In this paper, we create a framework for training-based channel estimation under different channel and interference statistics. The minimum mean square error (MMSE) estimator for channel matrix estimation in Rician fading multi-antenna systems is analyzed, and especially the design of mean square error (MSE) minimizing training sequences. By considering Kronecker-structured systems with a combination of noise and interference and arbitrary training sequence length, we collect and generalize several previous results in the framework. We clarify the conditions for achieving the optimal training sequence structure and show when the spatial training power allocation can be solved explicitly. We also prove that spatial correlation improves the estimation performance and establish how it determines the optimal training sequence length. The analytic results for Kronecker-structured systems are used to derive a heuristic training sequence under general unstructured statistics. The MMSE estimator of the squared Frobenius norm of the channel matrix is also derived and shown to provide far better gain estimates than other approaches. It is shown under which conditions training sequences that minimize the non-convex MSE can be derived explicitly or with low complexity. Numerical examples are used to evaluate the performance of the two estimators for different training sequences and system statistics. We also illustrate how the optimal length of the training sequence often can be shorter than the number of transmit antennas.

Journal ArticleDOI
TL;DR: This work provides insight on the advantages and drawbacks of l1 relaxation techniques such as BPDN and the Dantzig selector, as opposed to greedy approaches such as OMP and thresholding and provides theoretical performance guarantees for three sparse estimation algorithms.
Abstract: We consider the problem of estimating a deterministic sparse vector x0 from underdetermined measurements A x0 + w, where w represents white Gaussian noise and A is a given deterministic dictionary. We provide theoretical performance guarantees for three sparse estimation algorithms: basis pursuit denoising (BPDN), orthogonal matching pursuit (OMP), and thresholding. The performance of these techniques is quantified as the l2 distance between the estimate and the true value of x0. We demonstrate that, with high probability, the analyzed algorithms come close to the behavior of the oracle estimator, which knows the locations of the nonzero elements in x0. Our results are non-asymptotic and are based only on the coherence of A, so that they are applicable to arbitrary dictionaries. This provides insight on the advantages and drawbacks of l1 relaxation techniques such as BPDN and the Dantzig selector, as opposed to greedy approaches such as OMP and thresholding.