scispace - formally typeset
Search or ask a question
JournalISSN: 1949-3029

IEEE Transactions on Sustainable Energy 

Institute of Electrical and Electronics Engineers
About: IEEE Transactions on Sustainable Energy is an academic journal published by Institute of Electrical and Electronics Engineers. The journal publishes majorly in the area(s): Wind power & Electric power system. It has an ISSN identifier of 1949-3029. Over the lifetime, 2190 publications have been published receiving 126565 citations. The journal is also known as: TSTE & ITSE.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a comprehensive review of the MPPT techniques applied to photovoltaic (PV) power system available until January, 2012 is provided, which is intended to serve as a convenient reference for future MPPT users in PV systems. But, confusion lies while selecting a MPPT as every technique has its own merits and demerits.
Abstract: This paper provides a comprehensive review of the maximum power point tracking (MPPT) techniques applied to photovoltaic (PV) power system available until January, 2012. A good number of publications report on different MPPT techniques for a PV system together with implementation. But, confusion lies while selecting a MPPT as every technique has its own merits and demerits. Hence, a proper review of these techniques is essential. Unfortunately, very few attempts have been made in this regard, excepting two latest reviews on MPPT [Salas, 2006], [Esram and Chapman, 2007]. Since, MPPT is an essential part of a PV system, extensive research has been revealed in recent years in this field and many new techniques have been reported to the list since then. In this paper, a detailed description and then classification of the MPPT techniques have made based on features, such as number of control variables involved, types of control strategies employed, types of circuitry used suitably for PV system and practical/commercial applications. This paper is intended to serve as a convenient reference for future MPPT users in PV systems.

1,584 citations

Journal ArticleDOI
TL;DR: In this article, an optimal power management mechanism for grid connected photovoltaic (PV) systems with storage is presented, where the structure of a power supervisor based on an optimal predictive power scheduling algorithm is proposed.
Abstract: This paper presents an optimal power management mechanism for grid connected photovoltaic (PV) systems with storage. The objective is to help intensive penetration of PV production into the grid by proposing peak shaving service at the lowest cost. The structure of a power supervisor based on an optimal predictive power scheduling algorithm is proposed. Optimization is performed using Dynamic Programming and is compared with a simple ruled-based management. The particularity of this study remains first in the consideration of batteries ageing into the optimization process and second in the “day-ahead” approach of power management. Simulations and real conditions application are carried out over one exemplary day. In simulation, it points out that peak shaving is realized with the minimal cost, but especially that power fluctuations on the grid are reduced which matches with the initial objective of helping PV penetration into the grid. In real conditions, efficiency of the predictive schedule depends on accuracy of the forecasts, which leads to future works about optimal reactive power management.

902 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss the use of droop-based active power curtailment techniques for overvoltage prevention in radial LV feeders as a means for increasing the installed PV capacity and energy yield.
Abstract: Overvoltages in low voltage (LV) feeders with high penetration of photovoltaics (PV) are usually prevented by limiting the feeder's PV capacity to very conservative values, even if the critical periods rarely occur. This paper discusses the use of droop-based active power curtailment techniques for overvoltage prevention in radial LV feeders as a means for increasing the installed PV capacity and energy yield. Two schemes are proposed and tested in a typical 240-V/75-kVA Canadian suburban distribution feeder with 12 houses with roof-top PV systems. In the first scheme, all PV inverters have the same droop coefficients. In the second, the droop coefficients are different so as to share the total active power curtailed among all PV inverters/houses. Simulation results demonstrate the effectiveness of the proposed schemes and that the option of sharing the power curtailment among all customers comes at the cost of an overall higher amount of power curtailed.

731 citations

Journal ArticleDOI
TL;DR: In this article, a smoothing control method for reducing wind/photovoltaic (PV)/BESS hybrid output power fluctuations and regulating battery state of charge (SOC) under the typical conditions is proposed.
Abstract: The battery energy storage station (BESS) is the current and typical means of smoothing wind- or solar-power generation fluctuations. Such BESS-based hybrid power systems require a suitable control strategy that can effectively regulate power output levels and battery state of charge (SOC). This paper presents the results of a wind/photovoltaic (PV)/BESS hybrid power system simulation analysis undertaken to improve the smoothing performance of wind/PV/BESS hybrid power generation and the effectiveness of battery SOC control. A smoothing control method for reducing wind/PV hybrid output power fluctuations and regulating battery SOC under the typical conditions is proposed. A novel real-time BESS-based power allocation method also is proposed. The effectiveness of these methods was verified using MATLAB/SIMULINK software.

728 citations

Journal ArticleDOI
TL;DR: To address the intrinsically stochastic availability of renewable energy sources (RES), a novel power scheduling approach is introduced that involves the actual renewable energy as well as the energy traded with the main grid, so that the supply-demand balance is maintained.
Abstract: Due to its reduced communication overhead and robustness to failures, distributed energy management is of paramount importance in smart grids, especially in microgrids, which feature distributed generation (DG) and distributed storage (DS). Distributed economic dispatch for a microgrid with high renewable energy penetration and demand-side management operating in grid-connected mode is considered in this paper. To address the intrinsically stochastic availability of renewable energy sources (RES), a novel power scheduling approach is introduced. The approach involves the actual renewable energy as well as the energy traded with the main grid, so that the supply-demand balance is maintained. The optimal scheduling strategy minimizes the microgrid net cost, which includes DG and DS costs, utility of dispatchable loads, and worst-case transaction cost stemming from the uncertainty in RES. Leveraging the dual decomposition, the optimization problem formulated is solved in a distributed fashion by the local controllers of DG, DS, and dispatchable loads. Numerical results are reported to corroborate the effectiveness of the novel approach.

718 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023375
2022267
2021231
2020271
2019214
2018186