scispace - formally typeset
Search or ask a question

Showing papers in "IEEE Transactions on Systems, Man, and Cybernetics in 2018"


Journal ArticleDOI
TL;DR: An overview of recent advances in event-triggered consensus of MASs is provided and some in-depth analysis is made on several event- Triggered schemes, including event-based sampling schemes, model-based event-Triggered scheme, sampled-data-basedevent-trIGgered schemes), and self- triggered sampling schemes.
Abstract: Event-triggered consensus of multiagent systems (MASs) has attracted tremendous attention from both theoretical and practical perspectives due to the fact that it enables all agents eventually to reach an agreement upon a common quantity of interest while significantly alleviating utilization of communication and computation resources. This paper aims to provide an overview of recent advances in event-triggered consensus of MASs. First, a basic framework of multiagent event-triggered operational mechanisms is established. Second, representative results and methodologies reported in the literature are reviewed and some in-depth analysis is made on several event-triggered schemes, including event-based sampling schemes, model-based event-triggered schemes, sampled-data-based event-triggered schemes, and self-triggered sampling schemes. Third, two examples are outlined to show applicability of event-triggered consensus in power sharing of microgrids and formation control of multirobot systems, respectively. Finally, some challenging issues on event-triggered consensus are proposed for future research.

770 citations


Journal ArticleDOI
TL;DR: A new finite-time stability criterion is proposed and a novel adaptive neural output-feedback control strategy is raised by backstepping technique, and under the presented control scheme, the finite- time quantized feedback control problem is coped with without limiting assumption for nonlinear functions.
Abstract: This paper addresses the finite-time tracking issue for nonlinear quantized systems with unmeasurable states. Compared with the existing researches, the finite-time quantized feedback control is considered for the first time. By proposing a new finite-time stability criterion and designing a state observer, a novel adaptive neural output-feedback control strategy is raised by backstepping technique. Under the presented control scheme, the finite-time quantized feedback control problem is coped with without limiting assumption for nonlinear functions.

366 citations


Journal ArticleDOI
TL;DR: A novel framework based on convolutional neural networks (CNNs), which transfers the structure of the RGB-based deep neural network to be applicable for depth view and fuses the deep representations of both views automatically to obtain the final saliency map is proposed.
Abstract: Salient object detection from RGB-D images aims to utilize both the depth view and RGB view to automatically localize objects of human interest in the scene. Although a few earlier efforts have been devoted to the study of this paper in recent years, two major challenges still remain: 1) how to leverage the depth view effectively to model the depth-induced saliency and 2) how to implement an optimal combination of the RGB view and depth view, which can make full use of complementary information among them. To address these two challenges, this paper proposes a novel framework based on convolutional neural networks (CNNs), which transfers the structure of the RGB-based deep neural network to be applicable for depth view and fuses the deep representations of both views automatically to obtain the final saliency map. In the proposed framework, the first challenge is modeled as a cross-view transfer problem and addressed by using the task-relevant initialization and adding deep supervision in hidden layer. The second challenge is addressed by a multiview CNN fusion model through a combination layer connecting the representation layers of RGB view and depth view. Comprehensive experiments on four benchmark datasets demonstrate the significant and consistent improvements of the proposed approach over other state-of-the-art methods.

364 citations


Journal ArticleDOI
TL;DR: This paper is concerned with the security control problem with quadratic cost criterion for a class of discrete-time stochastic nonlinear systems subject to deception attacks, and proposes an easy-solution version on above inequalities to obtain both the controller gain and the upper bound.
Abstract: This paper is concerned with the security control problem with quadratic cost criterion for a class of discrete-time stochastic nonlinear systems subject to deception attacks A definition of security in probability is adopted to account for the transient dynamics of controlled systems The purpose of the problem under consideration is to design a dynamic output feedback controller such that the prescribed security in probability is guaranteed while obtaining an upper bound of the quadratic cost criterion First of all, some sufficient conditions with the form of matrix inequalities are established in the framework of the input-to-state stability in probability Then, an easy-solution version on above inequalities is proposed by carrying out the well-known matrix inverse lemma to obtain both the controller gain and the upper bound Furthermore, the main results are shown to be extendable to the case of discrete-time stochastic linear systems Finally, two simulation examples are utilized to illustrate the usefulness of the proposed controller design scheme

364 citations


Journal ArticleDOI
TL;DR: A generic approach that requires small training data for ASI is proposed, which builds classifier on the features of image patches, where the features are transferred from a pretrained deep learning network.
Abstract: Automated surface inspection (ASI) is a challenging task in industry, as collecting training dataset is usually costly and related methods are highly dataset-dependent. In this paper, a generic approach that requires small training data for ASI is proposed. First, this approach builds classifier on the features of image patches, where the features are transferred from a pretrained deep learning network. Next, pixel-wise prediction is obtained by convolving the trained classifier over input image. An experiment on three public and one industrial data set is carried out. The experiment involves two tasks: 1) image classification and 2) defect segmentation. The results of proposed algorithm are compared against several best benchmarks in literature. In the classification tasks, the proposed method improves accuracy by 0.66%–25.50%. In the segmentation tasks, the proposed method reduces error escape rates by 6.00%–19.00% in three defect types and improves accuracies by 2.29%–9.86% in all seven defect types. In addition, the proposed method achieves 0.0% error escape rate in the segmentation task of industrial data.

328 citations


Journal ArticleDOI
TL;DR: A novel computationally intelligent-based electrocardiogram (ECG) signal classification methodology using a deep learning (DL) machine that autonomously learns representative and key features of the PAF to be used by a classification module.
Abstract: In this paper, a novel computationally intelligent-based electrocardiogram (ECG) signal classification methodology using a deep learning (DL) machine is developed. The focus is on patient screening and identifying patients with paroxysmal atrial fibrillation (PAF), which represents a life threatening cardiac arrhythmia. The proposed approach operates with a large volume of raw ECG time-series data as inputs to a deep convolutional neural networks (CNN). It autonomously learns representative and key features of the PAF to be used by a classification module. The features are therefore learned directly from the large time domain ECG signals by using a CNN with one fully connected layer. The learned features can effectively replace the traditional ad hoc and time-consuming user’s hand-crafted features. Our experimental results verify and validate the effectiveness and capabilities of the learned features for PAF patient screening. The main advantages of our proposed approach are to simplify the feature extraction process corresponding to different cardiac arrhythmias and to remove the need for using a human expert to define appropriate and critical features working with a large time-series data set. The extensive simulations and case studies conducted indicate that combining the learned features with other classifiers will significantly improve the performance of the patient screening system as compared to an end-to-end CNN classifier. The effectiveness and capabilities of our proposed ECG DL classification machine is demonstrated and quantitative comparisons with several conventional machine learning classifiers are also provided.

312 citations


Journal ArticleDOI
TL;DR: In this article, a six-layer reference model of the blockchain framework is proposed with detailed description for each of its six layers, and potential applications of blockchain and cryptocurrencies are also addressed.
Abstract: As an emerging decentralized architecture and distributed computing paradigm underlying Bitcoin and other cryptocurrencies, blockchain has attracted intensive attention in both research and applications in recent years. The key advantage of this technology lies in the fact that it enables the establishment of secured, trusted, and decentralized autonomous ecosystems for various scenarios, especially for better usage of the legacy devices, infrastructure, and resources. In this paper, we presented a systematic investigation of blockchain and cryptocurrencies. Related fundamental rationales, technical advantages, existing and potential ecosystems of Bitcoin and other cryptocurrencies are discussed, and a six-layer reference model of the blockchain framework is proposed with detailed description for each of its six layers. Potential applications of blockchain and cryptocurrencies are also addressed. Our aim here is to provide guidance and reference for future research along this promising and important direction.

310 citations


Journal ArticleDOI
TL;DR: A graph learning-based multiview clustering algorithm is proposed to improve the quality of the graph and the cluster indicators are obtained directly by the global graph without performing any graph cut technique and the $k$ -means clustering.
Abstract: Most existing graph-based clustering methods need a predefined graph and their clustering performance highly depends on the quality of the graph. Aiming to improve the multiview clustering performance, a graph learning-based method is proposed to improve the quality of the graph. Initial graphs are learned from data points of different views, and the initial graphs are further optimized with a rank constraint on the Laplacian matrix. Then, these optimized graphs are integrated into a global graph with a well-designed optimization procedure. The global graph is learned by the optimization procedure with the same rank constraint on its Laplacian matrix. Because of the rank constraint, the cluster indicators are obtained directly by the global graph without performing any graph cut technique and the $k$ -means clustering. Experiments are conducted on several benchmark datasets to verify the effectiveness and superiority of the proposed graph learning-based multiview clustering algorithm comparing to the state-of-the-art methods.

301 citations


Journal ArticleDOI
TL;DR: This paper is concerned with the event-triggered finite-time control problem for networked switched linear systems by using an asynchronous switching scheme, and sufficient conditions are established to guarantee theevent-based asynchronous closed-loop systems are both finite-Time bounded and input-output finite- time stable.
Abstract: This paper is concerned with the event-triggered finite-time control problem for networked switched linear systems by using an asynchronous switching scheme. Not only the problem of finite-time boundedness, but also the problem of input-output finite-time stability is considered in this paper. Compared with the existing event-triggered results of the switched systems, a new type of event-triggered condition is proposed. Sufficient conditions are established to guarantee the event-based asynchronous closed-loop systems are both finite-time bounded and input-output finite-time stable. A set of event-triggered finite-time bounded and input-output finite-time stabilizing controllers are designed under the asynchronous control scheme. It is revealed that the triggered thresholds determine the number of sampling points transmitted to the controller, and the smaller triggered parameters indicate the less-sampled data needed to be transmitted to the controller under the event-triggered scheme. Finally, a boost converter circuit is applied to bring out the advantages of the proposed control scheme.

299 citations


Journal ArticleDOI
TL;DR: A deep learning-based approach for RUL prediction of rotating components with big data is presented and tested and validated using data collected from a gear test rig and bearing run-to-failure tests and compared with existing PHM methods.
Abstract: In the age of Internet of Things and Industrial 4.0, prognostic and health management (PHM) systems are used to collect massive real-time data from mechanical equipment. PHM big data has the characteristics of large-volume, diversity, and high-velocity. Effectively mining features from such data and accurately predicting the remaining useful life (RUL) of the rotating components with new advanced methods become issues in PHM. Traditional data driven prognostics is based on shallow learning architectures, requires establishing explicit model equations and much prior knowledge about signal processing techniques and prognostic expertise, and therefore is limited in the age of big data. This paper presents a deep learning-based approach for RUL prediction of rotating components with big data. The presented approach is tested and validated using data collected from a gear test rig and bearing run-to-failure tests and compared with existing PHM methods. The test results show the promising RUL prediction performance of the deep learning-based approach.

288 citations


Journal ArticleDOI
TL;DR: Simulation results substantiate the efficacy of the proposed method for output-feedback path-following of under-actuated autonomous underwater vehicles and prove that all error signals in the closed-loop system are uniformly and ultimately bounded.
Abstract: This paper presents a design method for output-feedback path-following control of under-actuated autonomous underwater vehicles moving in a vertical plane without using surge, heave, and pitch velocities. Specifically, an extended state observer (ESO) is developed to recover the unmeasured velocities as well as to estimate total uncertainty induced by internal model uncertainty and external disturbance. At the kinematic level, a commanded guidance law is developed based on a vertical line-of-sight guidance scheme and the observed velocities. To optimize guidance signals, optimization-based reference governors are formulated as bound-constrained quadratic programming problems for computing optimal reference signals. Two globally convergent recurrent neural networks called projection neural networks are used to solve the optimization problems in real-time. Based on the optimal reference signals and ESO, a kinetic control law with disturbance rejection capability is constructed at the kinetic level. It is proved that all error signals in the closed-loop system are uniformly and ultimately bounded. Simulation results substantiate the efficacy of the proposed method for output-feedback path-following of under-actuated autonomous underwater vehicles.

Journal ArticleDOI
TL;DR: A novel distributed event-triggered communication protocol based on state estimates of neighboring agents is proposed to solve the consensus problem of the leader-following systems and can greatly reduce the communication load of multiagent networks.
Abstract: In this paper, the leader-following consensus problem of high-order multiagent systems via event-triggered control is discussed. A novel distributed event-triggered communication protocol based on state estimates of neighboring agents is proposed to solve the consensus problem of the leader-following systems. We first investigate the consensus problem in a fixed topology, and then extend to the switching topologies. State estimates in fixed topology are only updated when the trigger condition is satisfied. However, state estimates in switching topologies are renewed with two cases: 1) the communication topology is switched or 2) the trigger condition is satisfied. Clearly, compared to continuous-time interaction, this protocol can greatly reduce the communication load of multiagent networks. Besides, the event-triggering function is constructed based on the local information and a new event-triggered rule is given. Moreover, “Zeno behavior” can be excluded. Finally, we give two examples to validate the feasibility and efficiency of our approach.

Journal ArticleDOI
TL;DR: A novel semisupervised feature selection method from a new perspective that incorporates the exploration of the local structure into the procedure of joint feature selection so as to learn the optimal graph simultaneously and an adaptive loss function is exploited to measure the label fitness.
Abstract: Video semantic recognition usually suffers from the curse of dimensionality and the absence of enough high-quality labeled instances, thus semisupervised feature selection gains increasing attentions for its efficiency and comprehensibility. Most of the previous methods assume that videos with close distance (neighbors) have similar labels and characterize the intrinsic local structure through a predetermined graph of both labeled and unlabeled data. However, besides the parameter tuning problem underlying the construction of the graph, the affinity measurement in the original feature space usually suffers from the curse of dimensionality. Additionally, the predetermined graph separates itself from the procedure of feature selection, which might lead to downgraded performance for video semantic recognition. In this paper, we exploit a novel semisupervised feature selection method from a new perspective. The primary assumption underlying our model is that the instances with similar labels should have a larger probability of being neighbors. Instead of using a predetermined similarity graph, we incorporate the exploration of the local structure into the procedure of joint feature selection so as to learn the optimal graph simultaneously. Moreover, an adaptive loss function is exploited to measure the label fitness, which significantly enhances model’s robustness to videos with a small or substantial loss. We propose an efficient alternating optimization algorithm to solve the proposed challenging problem, together with analyses on its convergence and computational complexity in theory. Finally, extensive experimental results on benchmark datasets illustrate the effectiveness and superiority of the proposed approach on video semantic recognition related tasks.

Journal ArticleDOI
TL;DR: The results illustrate that the proposed GDM method cannot only avoid information loss, but also effectively integrate heterogeneous information in heterogeneous GDM environment.
Abstract: This paper proposes a group decision-making (GDM) method for integrating heterogeneous information. To avoid information loss, instead of transforming heterogeneous information into a single form, the proposed method integrates heterogeneous information using a weighted-power average operator. The consensus degree between the individual-decision matrix and the group-decision matrix is then calculated based on the deviation degree. In addition, the feedback mechanism with the iterative algorithm is used to adjust the individual decision matrix, which does not reach the consensus. Furthermore, a ranking formula with heterogeneous technique for order preference by similarity to an ideal solution is adopted to select the best alternative. A numerical example of supplier selection is introduced to validate the proposed model and compare it with other similar GDM models. The results illustrate that the proposed method cannot only avoid information loss, but also effectively integrate heterogeneous information in heterogeneous GDM environment.

Journal ArticleDOI
TL;DR: Experimental results indicate that compared with the state-of-the-art predictors, the newly proposed one achieves significantly higher prediction accuracy at the expense of affordable computational burden, especially suitable for industrial applications requiring high prediction accuracy of unknown QoS data.
Abstract: Generating highly accurate predictions for missing quality-of-service (QoS) data is an important issue. Latent factor (LF)-based QoS-predictors have proven to be effective in dealing with it. However, they are based on first-order solvers that cannot well address their target problem that is inherently bilinear and nonconvex, thereby leaving a significant opportunity for accuracy improvement. This paper proposes to incorporate an efficient second-order solver into them to raise their accuracy. To do so, we adopt the principle of Hessian-free optimization and successfully avoid the direct manipulation of a Hessian matrix, by employing the efficiently obtainable product between its Gauss-Newton approximation and an arbitrary vector. Thus, the second-order information is innovatively integrated into them. Experimental results on two industrial QoS datasets indicate that compared with the state-of-the-art predictors, the newly proposed one achieves significantly higher prediction accuracy at the expense of affordable computational burden. Hence, it is especially suitable for industrial applications requiring high prediction accuracy of unknown QoS data.

Journal ArticleDOI
TL;DR: The Round-Robin protocol is introduced to overcome the channel capacity constraint among sensor nodes, and the multiplicative noise is employed to model the channel fading.
Abstract: This paper considers finite-time distributed state estimation for discrete-time nonlinear systems over sensor networks. The Round-Robin protocol is introduced to overcome the channel capacity constraint among sensor nodes, and the multiplicative noise is employed to model the channel fading. In order to improve the performance of the estimator under the situation, where the transmission resources are limited, fading channels with different stochastic properties are used in each round by allocating the resources. Sufficient conditions of the average stochastic finite-time boundedness and the average stochastic finite-time stability for the estimation error system are derived on the basis of the periodic system analysis method and Lyapunov approach, respectively. According to the linear matrix inequality approach, the estimator gains are designed. Finally, the effectiveness of the developed results are illustrated by a numerical example.

Journal ArticleDOI
TL;DR: Zhang et al. as discussed by the authors proposed a novel ensemble clustering approach based on ensemble-driven cluster uncertainty estimation and local weighting strategy, where the uncertainty of each cluster is estimated by considering the cluster labels in the entire ensemble via an entropy criterion.
Abstract: Due to its ability to combine multiple base clusterings into a probably better and more robust clustering, the ensemble clustering technique has been attracting increasing attention in recent years. Despite the significant success, one limitation to most of the existing ensemble clustering methods is that they generally treat all base clusterings equally regardless of their reliability, which makes them vulnerable to low-quality base clusterings. Although some efforts have been made to (globally) evaluate and weight the base clusterings, yet these methods tend to view each base clustering as an individual and neglect the local diversity of clusters inside the same base clustering. It remains an open problem how to evaluate the reliability of clusters and exploit the local diversity in the ensemble to enhance the consensus performance, especially, in the case when there is no access to data features or specific assumptions on data distribution. To address this, in this paper, we propose a novel ensemble clustering approach based on ensemble-driven cluster uncertainty estimation and local weighting strategy. In particular, the uncertainty of each cluster is estimated by considering the cluster labels in the entire ensemble via an entropic criterion. A novel ensemble-driven cluster validity measure is introduced, and a locally weighted co-association matrix is presented to serve as a summary for the ensemble of diverse clusters. With the local diversity in ensembles exploited, two novel consensus functions are further proposed. Extensive experiments on a variety of real-world datasets demonstrate the superiority of the proposed approach over the state-of-the-art.

Journal ArticleDOI
Tieshan Li1, Rong Zhao1, C. L. Philip Chen1, Liyou Fang1, Cheng Liu1 
TL;DR: A novel nonlinear sliding mode control approach dealing with the formation control of under-actuated ships is presented and a distributed controller is designed for individual under-Actuated ship to achieve the given formation pattern within a finite time.
Abstract: A novel nonlinear sliding mode control approach dealing with the formation control of under-actuated ships is presented in this paper To avoid the singularity problem, state space of the system is partitioned into two regions, with one region bounded for terminal sliding mode control and its complement singular for that And a linear auxiliary sliding mode controller is designed for system trajectories starting from the complement region With the application of nonlinear sliding mode control approach and finite-time stability theory, a distributed controller is designed for individual under-actuated ship to achieve the given formation pattern within a finite time Finally, two simulation examples are provided to verify the effectiveness and performance of the proposed approach

Journal ArticleDOI
TL;DR: The secure distributed Kalman fusion estimation problem is investigated in this paper for a class of CPSs under replay attacks, where each local estimate obtained by the sink node is transmitted to a remote fusion center through bandwidth constrained communication channels.
Abstract: State estimation plays an essential role in the monitoring and supervision of cyber-physical systems (CPSs), and its importance has made the security and estimation performance a major concern. In this case, multisensor information fusion estimation (MIFE) provides an attractive alternative to study secure estimation problems because MIFE can potentially improve estimation accuracy and enhance reliability and robustness against attacks. From the perspective of the defender, the secure distributed Kalman fusion estimation problem is investigated in this paper for a class of CPSs under replay attacks, where each local estimate obtained by the sink node is transmitted to a remote fusion center through bandwidth constrained communication channels. A new mathematical model with compensation strategy is proposed to characterize the replay attacks and bandwidth constrains, and then a recursive distributed Kalman fusion estimator (DKFE) is designed in the linear minimum variance sense. According to different communication frameworks, two classes of data compression and compensation algorithms are developed such that the DKFEs can achieve the desired performance. Several attack-dependent and bandwidth-dependent conditions are derived such that the DKFEs are secure under replay attacks. An illustrative example is given to demonstrate the effectiveness of the proposed methods.

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper proposed a feature learning framework for hyperspectral images spectral-spatial feature representation and classification, which learns a latent low dimensional subspace by projecting the spectral and spatial feature into a common feature space, where the complementary information has been effectively exploited.
Abstract: In hyperspectral remote sensing data mining, it is important to take into account of both spectral and spatial information, such as the spectral signature, texture feature, and morphological property, to improve the performances, e.g., the image classification accuracy. In a feature representation point of view, a nature approach to handle this situation is to concatenate the spectral and spatial features into a single but high dimensional vector and then apply a certain dimension reduction technique directly on that concatenated vector before feed it into the subsequent classifier. However, multiple features from various domains definitely have different physical meanings and statistical properties, and thus such concatenation has not efficiently explore the complementary properties among different features, which should benefit for boost the feature discriminability. Furthermore, it is also difficult to interpret the transformed results of the concatenated vector. Consequently, finding a physically meaningful consensus low dimensional feature representation of original multiple features is still a challenging task. In order to address these issues, we propose a novel feature learning framework, i.e., the simultaneous spectral-spatial feature selection and extraction algorithm, for hyperspectral images spectral-spatial feature representation and classification. Specifically, the proposed method learns a latent low dimensional subspace by projecting the spectral-spatial feature into a common feature space, where the complementary information has been effectively exploited, and simultaneously, only the most significant original features have been transformed. Encouraging experimental results on three public available hyperspectral remote sensing datasets confirm that our proposed method is effective and efficient.

Journal ArticleDOI
TL;DR: A novel integral-type fuzzy switching surface function is put forward, which contains singular perturbation matrix and state-dependent input matrix simultaneously in a transformed fuzzy SPSs such that the matched uncertainty/perturbation is completely compensated without amplifying the unmatched one.
Abstract: This paper presents a new sliding mode control (SMC) design methodology for fuzzy singularly perturbed systems (SPSs) subject to matched/unmatched uncertainties. To fully accommodate the model characteristics of the systems, a novel integral-type fuzzy switching surface function is put forward, which contains singular perturbation matrix and state-dependent input matrix simultaneously. Its corresponding sliding mode dynamics is a transformed fuzzy SPSs such that the matched uncertainty/perturbation is completely compensated without amplifying the unmatched one. By adopting a $\boldsymbol \varepsilon $ -dependent Lyapunov function, sufficient conditions are presented to guarantee the asymptotic stability of sliding mode dynamics, and a simple search algorithm is provided to find the stability bound. Then, a fuzzy SMC law is synthesized to ensure the reaching condition despite matched/unmatched uncertainties. A modified adaptive fuzzy SMC law is further constructed for adapting the unknown upper bound of the matched uncertainty. The applicability and superiority of obtained fuzzy SMC methodology are verified by a controller design for an electric circuit system.

Journal ArticleDOI
TL;DR: The experimental results show that CF-CRE can produce substantially higher accuracy than other fusion methods in general and is robust to the changes of the number of nearest neighbors chosen for estimating the reliability matrix, which is appealing for the applications.
Abstract: Classifier fusion is an efficient strategy to improve the classification performance for the complex pattern recognition problem. In practice, the multiple classifiers to combine can have different reliabilities and the proper reliability evaluation plays an important role in the fusion process for getting the best classification performance. We propose a new method for classifier fusion with contextual reliability evaluation (CF-CRE) based on inner reliability and relative reliability concepts. The inner reliability, represented by a matrix, characterizes the probability of the object belonging to one class when it is classified to another class. The elements of this matrix are estimated from the $K$ -nearest neighbors of the object. A cautious discounting rule is developed under belief functions framework to revise the classification result according to the inner reliability. The relative reliability is evaluated based on a new incompatibility measure which allows to reduce the level of conflict between the classifiers by applying the classical evidence discounting rule to each classifier before their combination. The inner reliability and relative reliability capture different aspects of the classification reliability. The discounted classification results are combined with Dempster–Shafer’s rule for the final class decision making support. The performance of CF-CRE have been evaluated and compared with those of main classical fusion methods using real data sets. The experimental results show that CF-CRE can produce substantially higher accuracy than other fusion methods in general. Moreover, CF-CRE is robust to the changes of the number of nearest neighbors chosen for estimating the reliability matrix, which is appealing for the applications.

Journal ArticleDOI
TL;DR: The agent-oriented approach is specifically based on the agent-based cooperating smart object (ACOSO) methodology and on the related ACOSO middleware: they provide effective agent design and programming models along with efficient tools for the actual construction of an IoT system in terms of a multiagent system.
Abstract: The future Internet of Things (IoT) is expected to enable a new and wide range of decentralized systems (from small-scale smart homes to large-scale smart cities) in which “things” are able to sense/actuate, compute, and communicate, and thus play a central and crucial role. The growing importance of such novel networked cyber-physical context demands suitable and effective computing paradigms to fulfill the various requirements of IoT systems engineering. In this paper, we propose to explore an agent-based computing paradigm to support IoT systems analysis, design, and implementation. The synergic meeting of agents with IoT makes it possible to develop smart and dynamic IoT systems of diverse scales. Our agent-oriented approach is specifically based on the agent-based cooperating smart object (ACOSO) methodology and on the related ACOSO middleware: they provide effective agent design and programming models along with efficient tools for the actual construction of an IoT system in terms of a multiagent system. A case study concerning the development of a complex IoT system, namely a Smart University Campus , is described to show the effectiveness and efficiency of the proposed approach.

Journal ArticleDOI
TL;DR: A distributed coordination control law is developed for the dynamic task allocation among multiple redundant robot manipulators with limited communications and with the aid of a consensus filter to substantiate the efficacy of the proposed control law.
Abstract: The problem of dynamic task allocation in a distributed network of redundant robot manipulators for path-tracking with limited communications is investigated in this paper, where ${k}$ fittest ones in a group of ${n}$ redundant robot manipulators with ${n>k}$ are allocated to execute an object tracking task. The problem is essentially challenging in view of the interplay of manipulator kinematics and the dynamic competition for activation among manipulators. To handle such an intricate problem, a distributed coordination control law is developed for the dynamic task allocation among multiple redundant robot manipulators with limited communications and with the aid of a consensus filter. In addition, a theorem and its proof are presented for guaranteeing the convergence and stability of the proposed distributed control law. Finally, an illustrative example is provided and analyzed to substantiate the efficacy of the proposed control law.

Journal ArticleDOI
TL;DR: It is proved that under the proposed control, the constrained requirements on the vessel position error are never violated and all closed-loop signals are uniformly ultimately bounded, regardless of fully actuated or under-actuated control configuration.
Abstract: This paper presents an error-constrained line-of-sight (ECLOS) path-following control method for a surface vessel subject to uncertainties, disturbances, and actuator saturation and faults. Based on a cascaded three degrees-of-freedom model of surface vessel, the backstepping technique is adopted as the main control framework. Error constraint of the vessel position is handled by integrating a novel tan-type barrier Lyapunov function. The proposed ECLOS method is in accordance with the classical line-of-sight method where no constraint is imposed. A nonlinear disturbance observer is developed to estimate the lumped disturbance that comprises the effects of parametric uncertainties, external environment disturbances, and actuator saturation and faults. It is proved that under the proposed control, the constrained requirements on the vessel position error are never violated and all closed-loop signals are uniformly ultimately bounded, regardless of fully actuated or under-actuated control configuration. Simulation results and comparisons illustrate the effectiveness and advantages of the proposed ECLOS path-following method.

Journal ArticleDOI
TL;DR: In this paper, the finite-time and fixed-time cluster synchronization problem for complex networks with or without pinning control are discussed and numerical simulations are presented to demonstrate the correctness of obtained theoretical results.
Abstract: In this paper, the finite-time and fixed-time cluster synchronization problem for complex networks with or without pinning control are discussed. Finite-time (or fixed-time) synchronization has been a hot topic in recent years, which means that the network can achieve synchronization in finite-time, and the settling time depends on the initial values for finite-time synchronization (or the settling time is bounded by a constant for any initial values for fixed-time synchronization). To realize the finite-time and fixed-time cluster synchronization, some simple distributed protocols with or without pinning control are designed and the effectiveness is rigorously proved. Several sufficient criteria are also obtained to clarify the effects of coupling terms for finite-time and fixed-time cluster synchronization. Especially, when the cluster number is one, the cluster synchronization becomes the complete synchronization problem; when the network has only one node, the coupling term between nodes will disappear, and the synchronization problem becomes the simplest master-slave case, which also includes the stability problem for nonlinear systems like neural networks. All these cases are also discussed. Finally, numerical simulations are presented to demonstrate the correctness of obtained theoretical results.

Journal ArticleDOI
TL;DR: This paper investigates the problem of event-triggered fault detection (FD) filter design for nonlinear networked systems in the framework of interval type-2 fuzzy systems and proposes an augmented FD system with imperfectly matched MFs, which hampers the stability analysis and FD.
Abstract: This paper investigates the problem of event-triggered fault detection (FD) filter design for nonlinear networked systems in the framework of interval type-2 fuzzy systems. In the system model, the parameter uncertainty is captured effectively by the membership functions (MFs) with upper and lower bounds. For reducing the utilization of limited communication bandwidth, an event-triggered communication mechanism is applied. A novel FD filter subject to event-triggered communication mechanism, data quantization, and communication delay is designed to generate a residual signal and detect system faults, where the premise variables are different from those of the system model. Consequently, the augmented FD system is with imperfectly matched MFs, which hampers the stability analysis and FD. To relax the stability analysis and achieve a better FD performance, the information of MFs and slack matrices are utilized in the stability analysis. Finally, two examples are employed to demonstrate the effectiveness of the proposed scheme.

Journal ArticleDOI
TL;DR: A new concept of formation learning control is introduced to the field of formation control of multiple autonomous underwater vehicles (AUVs), which specifies a joint objective of distributed formation tracking control and learning/identification of nonlinear uncertain AUV dynamics.
Abstract: In this paper, a new concept of formation learning control is introduced to the field of formation control of multiple autonomous underwater vehicles (AUVs), which specifies a joint objective of distributed formation tracking control and learning/identification of nonlinear uncertain AUV dynamics. A novel two-layer distributed formation learning control scheme is proposed, which consists of an upper-layer distributed adaptive observer and a lower-layer decentralized deterministic learning controller. This new formation learning control scheme advances existing techniques in three important ways: 1) the multi-AUV system under consideration has heterogeneous nonlinear uncertain dynamics; 2) the formation learning control protocol can be designed and implemented by each local AUV agent in a fully distributed fashion without using any global information; and 3) in addition to the formation control performance, the distributed control protocol is also capable of accurately identifying the AUVs’ heterogeneous nonlinear uncertain dynamics and utilizing experiences to improve formation control performance. Extensive simulations have been conducted to demonstrate the effectiveness of the proposed results.

Journal ArticleDOI
TL;DR: The stability and stabilization criteria are derived by taking into consideration an asynchronous difference between the normalized membership function of the T–S fuzzy DPS and that of the controller, which can stabilize states of the UMV.
Abstract: This paper is concerned with a Takagi–Sugeno (T–S) fuzzy dynamic positioning controller design for an unmanned marine vehicle (UMV) in network environments. Network-based T–S fuzzy dynamic positioning system (DPS) models for the UMV are first established. Then, stability and stabilization criteria are derived by taking into consideration an asynchronous difference between the normalized membership function of the T–S fuzzy DPS and that of the controller. The proposed stabilization criteria can stabilize states of the UMV. The dynamic positioning performance analysis verifies the effectiveness of the networked modeling and the controller design.

Journal ArticleDOI
TL;DR: It is shown that practical consensus is reachable through the event-triggered control and converges to a consensus set and “Zeno phenomenon” can be excluded.
Abstract: In this paper, the problem of distributed event-triggered pinning control for practical consensus of multiagent systems (MASs) with quantized communication based on a directed graph is investigated. The pinning control for practical consensus of MASs with uniform quantizer is first discussed. Then, in order to decrease communication load of interagent, the event-triggered quantized communication protocol is designed. The nonsmooth analysis and Gronwall’s inequality approach is used to guarantee the existence of a solution to the resulting closed-loop system. It is shown that practical consensus is reachable through the event-triggered control and converges to a consensus set. Moreover, “Zeno phenomenon” can be excluded. Finally, an example is given to validate the feasibility and efficiency of the proposed new design method.