scispace - formally typeset

JournalISSN: 0885-3010

IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 

About: IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control is an academic journal. The journal publishes majorly in the area(s): Ultrasonic sensor & Transducer. It has an ISSN identifier of 0885-3010. Over the lifetime, 6977 publication(s) have been published receiving 223123 citation(s).
Papers
More filters

Journal ArticleDOI
TL;DR: The first in vivo investigations made on healthy volunteers emphasize the potential clinical applicability of SSI for breast cancer detection and results validating SSI in heterogeneous phantoms are presented.
Abstract: Supersonic shear imaging (SSI) is a new ultrasound-based technique for real-time visualization of soft tissue viscoelastic properties. Using ultrasonic focused beams, it is possible to remotely generate mechanical vibration sources radiating low-frequency, shear waves inside tissues. Relying on this concept, SSI proposes to create such a source and make it move at a supersonic speed. In analogy with the "sonic boom" created by a supersonic aircraft, the resulting shear waves will interfere constructively along a Mach cone, creating two intense plane shear waves. These waves propagate through the medium and are progressively distorted by tissue heterogeneities. An ultrafast scanner prototype is able to both generate this supersonic source and image (5000 frames/s) the propagation of the resulting shear waves. Using inversion algorithms, the shear elasticity of medium can be mapped quantitatively from this propagation movie. The SSI enables tissue elasticity mapping in less than 20 ms, even in strongly viscous medium like breast. Modalities such as shear compounding are implementable by tilting shear waves in different directions and improving the elasticity estimation. Results validating SSI in heterogeneous phantoms are presented. The first in vivo investigations made on healthy volunteers emphasize the potential clinical applicability of SSI for breast cancer detection.

2,115 citations


Journal ArticleDOI
TL;DR: A method for simulation of pulsed pressure fields from arbitrarily shaped, apodized and excited ultrasound transducers is suggested, which relies on the Tupholme-Stepanishen method for calculating pulsing pressure fields and can also handle the continuous wave and pulse-echo case.
Abstract: A method for simulation of pulsed pressure fields from arbitrarily shaped, apodized and excited ultrasound transducers is suggested. It relies on the Tupholme-Stepanishen method for calculating pulsed pressure fields, and can also handle the continuous wave and pulse-echo case. The field is calculated by dividing the surface into small rectangles and then Summing their response. A fast calculation is obtained by using the far-field approximation. Examples of the accuracy of the approach and actual calculation times are given. >

2,093 citations


Journal ArticleDOI
Mathias Fink1Institutions (1)
TL;DR: Pulsed wave time-reversal focusing is shown using reciprocity valid in inhomogeneous medium to be optimal in the sense that it realizes the spatial-temporal matched filter to the inhomogeneity propagation transfer function between the array and the target.
Abstract: Time reversal of ultrasonic fields represents a way to focus through an inhomogeneous medium. This may be accomplished by a time-reversal mirror (TRM) made from an array of transmit-receive transducers that respond linearly and allow the incident acoustic pressure to be sampled. The pressure field is then time-reversed and re-emitted. This process can be used to focus through inhomogeneous media on a reflective target that behaves as an acoustic source after being insonified. The time-reversal approach is introduced in a discussion of the classical techniques used for focusing pulsed waves through inhomogeneous media (adaptive time-delay techniques). Pulsed wave time-reversal focusing is shown using reciprocity valid in inhomogeneous medium to be optimal in the sense that it realizes the spatial-temporal matched filter to the inhomogeneous propagation transfer function between the array and the target. The research on time-reversed wave fields has also led to the development of new concepts that are described: time-reversal cavity that extends the concept of the TRM, and iterative time-reversal processing for automatic sorting of targets according to their reflectivity and resonating of extended targets. >

1,277 citations


Journal ArticleDOI
Gabriel Montaldo1, Mickael Tanter1, Jeremy Bercoff, N. Benech1  +1 moreInstitutions (1)
TL;DR: It is proposed to improve the beamforming process by using a coherent recombination of compounded plane-wave transmissions to recover high-quality echographic images without degrading the high frame rate capabilities.
Abstract: The emergence of ultrafast frame rates in ultrasonic imaging has been recently made possible by the development of new imaging modalities such as transient elastography. Data acquisition rates reaching more than thousands of images per second enable the real-time visualization of shear mechanical waves propagating in biological tissues, which convey information about local viscoelastic properties of tissues. The first proposed approach for reaching such ultrafast frame rates consists of transmitting plane waves into the medium. However, because the beamforming process is then restricted to the receive mode, the echographic images obtained in the ultrafast mode suffer from a low quality in terms of resolution and contrast and affect the robustness of the transient elastography mode. It is here proposed to improve the beamforming process by using a coherent recombination of compounded plane-wave transmissions to recover high-quality echographic images without degrading the high frame rate capabilities. A theoretical model is derived for the comparison between the proposed method and the conventional B-mode imaging in terms of contrast, signal-to-noise ratio, and resolution. Our model predicts that a significantly smaller number of insonifications, 10 times lower, is sufficient to reach an image quality comparable to conventional B-mode. Theoretical predictions are confirmed by in vitro experiments performed in tissue-mimicking phantoms. Such results raise the appeal of coherent compounds for use with standard imaging modes such as B-mode or color flow. Moreover, in the context of transient elastography, ultrafast frame rates can be preserved while increasing the image quality compared with flat insonifications. Improvements on the transient elastography mode are presented and discussed.

1,172 citations


Journal ArticleDOI
Michael J. S. Lowe1Institutions (1)
TL;DR: This paper presents a review of the main developments of the matrix techniques, and their use in response and modal models, with emphasis on ultrasonics applications.
Abstract: Research into ultrasonic NDE techniques for the inspection of multilayered structures relies strongly on the use of modeling tools which calculate dispersion curves and reflection and transmission spectra. These predictions are essential to enable the best inspection strategies to be identified and their sensitivities to be evaluated. General purpose multilayer modeling tools may be developed from a number of matrix formulations which have evolved in the latter half of this century and there is now a formidable number of publications on the subject. This paper presents a review of the main developments of the matrix techniques, and their use in response and modal models, with emphasis on ultrasonics applications. >

867 citations


Network Information
Related Journals (5)
Sensors and Actuators A-physical

12.9K papers, 362.8K citations

82% related
Journal of the Acoustical Society of America

86.8K papers, 2.1M citations

81% related
IEEE Transactions on Medical Imaging

5.4K papers, 471.7K citations

77% related
Applied Physics Letters

127.6K papers, 5.2M citations

76% related
Physics in Medicine and Biology

15.7K papers, 564.7K citations

76% related
Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2021337
2020276
2019187
2018238
2017169
2016211