scispace - formally typeset
Search or ask a question
JournalISSN: 0018-9545

IEEE Transactions on Vehicular Technology 

Institute of Electrical and Electronics Engineers
About: IEEE Transactions on Vehicular Technology is an academic journal published by Institute of Electrical and Electronics Engineers. The journal publishes majorly in the area(s): Computer science & Fading. It has an ISSN identifier of 0018-9545. Over the lifetime, 15565 publications have been published receiving 584856 citations. The journal is also known as: Vehicular technology & Vehicular technology, IEEE transactions on.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the interference-suppression feature of CDMA (code division multiple access) can result in a many-fold increase in capacity over analog and even over competing digital techniques.
Abstract: It is shown that, particularly for terrestrial cellular telephony, the interference-suppression feature of CDMA (code division multiple access) can result in a many-fold increase in capacity over analog and even over competing digital techniques. A single-cell system, such as a hubbed satellite network, is addressed, and the basic expression for capacity is developed. The corresponding expressions for a multiple-cell system are derived. and the distribution on the number of users supportable per cell is determined. It is concluded that properly augmented and power-controlled multiple-cell CDMA promises a quantum increase in current cellular capacity. >

2,974 citations

Journal ArticleDOI
TL;DR: An empirical formula for propagation loss is derived from Okumura's report in order to put his propagation prediction method to computational use.
Abstract: An empirical formula for propagation loss is derived from Okumura's report in order to put his propagation prediction method to computational use. The propagation loss in an urban area is presented in a simple form: A + B log 10 R, where A and B are frequency and antenna height functions and R is the distance. The introduced formula is applicable to system designs for UHF and VHF land mobile radio services, with a small formulation error, under the following conditions: frequency range 100-1500 MHz, distance 1-20 km, base station antenna height 30-200 m, and vehicular antenna height 1-10 m.

2,763 citations

Journal Article
TL;DR: An analytical approach for symbol error ratio (SER) analysis of the SM algorithm in independent identically distributed Rayleigh channels results closely match and it is shown that SM achieves better performance in all studied channel conditions, as compared with other techniques.
Abstract: Spatial modulation (SM) is a recently developed transmission technique that uses multiple antennas. The basic idea is to map a block of information bits to two information carrying units: 1) a symbol that was chosen from a constellation diagram and 2) a unique transmit antenna number that was chosen from a set of transmit antennas. The use of the transmit antenna number as an information-bearing unit increases the overall spectral efficiency by the base-two logarithm of the number of transmit antennas. At the receiver, a maximum receive ratio combining algorithm is used to retrieve the transmitted block of information bits. Here, we apply SM to orthogonal frequency division multiplexing (OFDM) transmission. We develop an analytical approach for symbol error ratio (SER) analysis of the SM algorithm in independent identically distributed (i.i.d.) Rayleigh channels. The analytical and simulation results closely match. The performance and the receiver complexity of the SM-OFDM technique are compared to those of the vertical Bell Labs layered space-time (V-BLAST-OFDM) and Alamouti-OFDM algorithms. V-BLAST uses minimum mean square error (MMSE) detection with ordered successive interference cancellation. The combined effect of spatial correlation, mutual antenna coupling, and Rician fading on both coded and uncoded systems are presented. It is shown that, for the same spectral efficiency, SM results in a reduction of around 90% in receiver complexity as compared to V-BLAST and nearly the same receiver complexity as Alamouti. In addition, we show that SM achieves better performance in all studied channel conditions, as compared with other techniques. It is also shown to efficiently work for any configuration of transmit and receive antennas, even for the case of fewer receive antennas than transmit antennas.

1,996 citations

Journal ArticleDOI
TL;DR: For wireless cellular communication systems, one seeks a simple effective means of power control of signals associated with randomly dispersed users that are reusing a single channel in different cells, and the authors demonstrate exponentially fast convergence to these settings whenever power settings exist for which all users meet the rho requirement.
Abstract: For wireless cellular communication systems, one seeks a simple effective means of power control of signals associated with randomly dispersed users that are reusing a single channel in different cells. By effecting the lowest interference environment, in meeting a required minimum signal-to-interference ratio of rho per user, channel reuse is maximized. Distributed procedures for doing this are of special interest, since the centrally administered alternative requires added infrastructure, latency, and network vulnerability. Successful distributed powering entails guiding the evolution of the transmitted power level of each of the signals, using only focal measurements, so that eventually all users meet the rho requirement. The local per channel power measurements include that of the intended signal as well as the undesired interference from other users (plus receiver noise). For a certain simple distributed type of algorithm, whenever power settings exist for which all users meet the rho requirement, the authors demonstrate exponentially fast convergence to these settings. >

1,831 citations

Journal ArticleDOI
TL;DR: By partitioning the range of the received signal-to-noise ratio into a finite number of intervals, FSMC models can be constructed for Rayleigh fading channels and the validity and accuracy of the model are confirmed by the state equilibrium equations and computer simulation.
Abstract: The authors first study the behavior of a finite-state channel where a binary symmetric channel is associated with each state and Markov transitions between states are assumed. Such a channel is referred to as a finite-state Markov channel (FSMC). By partitioning the range of the received signal-to-noise ratio into a finite number of intervals, FSMC models can be constructed for Rayleigh fading channels. A theoretical approach is conducted to show the usefulness of FSMCs compared to that of two-state Gilbert-Elliott channels. The crossover probabilities of the binary symmetric channels associated with its states are calculated. The authors use the second-order statistics of the received SNR to approximate the Markov transition probabilities. The validity and accuracy of the model are confirmed by the state equilibrium equations and computer simulation. >

1,742 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
20232,013
20221,984
20211,065
20201,419
20191,091
20181,038