scispace - formally typeset
Search or ask a question

Showing papers in "IEEE Transactions on Visualization and Computer Graphics in 2013"


Journal ArticleDOI
TL;DR: A multi-level typology of visualization tasks is contributed to address the gap between why and how a visualization task is performed, as well as what the task inputs and outputs are.
Abstract: The considerable previous work characterizing visualization usage has focused on low-level tasks or interactions and high-level tasks, leaving a gap between them that is not addressed. This gap leads to a lack of distinction between the ends and means of a task, limiting the potential for rigorous analysis. We contribute a multi-level typology of visualization tasks to address this gap, distinguishing why and how a visualization task is performed, as well as what the task inputs and outputs are. Our typology allows complex tasks to be expressed as sequences of interdependent simpler tasks, resulting in concise and flexible descriptions for tasks of varying complexity and scope. It provides abstract rather than domain-specific descriptions of tasks, so that useful comparisons can be made between visualization systems targeted at different application domains. This descriptive power supports a level of analysis required for the generation of new designs, by guiding the translation of domain-specific problems into abstract tasks, and for the qualitative evaluation of visualization usage. We demonstrate the benefits of our approach in a detailed case study, comparing task descriptions from our typology to those derived from related work. We also discuss the similarities and differences between our typology and over two dozen extant classification systems and theoretical frameworks from the literatures of visualization, human-computer interaction, information retrieval, communications, and cartography.

655 citations


Journal ArticleDOI
TL;DR: This study serves to give a comprehensive survey of both types of registration, focusing on three-dimensional point clouds and meshes, and shows how overfitting arises in nonrigid registration and the reasons for increasing interest in intrinsic techniques.
Abstract: Three-dimensional surface registration transforms multiple three-dimensional data sets into the same coordinate system so as to align overlapping components of these sets Recent surveys have covered different aspects of either rigid or nonrigid registration, but seldom discuss them as a whole Our study serves two purposes: 1) To give a comprehensive survey of both types of registration, focusing on three-dimensional point clouds and meshes and 2) to provide a better understanding of registration from the perspective of data fitting Registration is closely related to data fitting in which it comprises three core interwoven components: model selection, correspondences and constraints, and optimization Study of these components 1) provides a basis for comparison of the novelties of different techniques, 2) reveals the similarity of rigid and nonrigid registration in terms of problem representations, and 3) shows how overfitting arises in nonrigid registration and the reasons for increasing interest in intrinsic techniques We further summarize some practical issues of registration which include initializations and evaluations, and discuss some of our own observations, insights and foreseeable research trends

637 citations


Journal ArticleDOI
TL;DR: The largest scale visualization study to date, using 2,070 single-panel visualizations, suggests that quantifying memorability is a general metric of the utility of information, an essential step towards determining how to design effective visualizations.
Abstract: An ongoing debate in the Visualization community concerns the role that visualization types play in data understanding. In human cognition, understanding and memorability are intertwined. As a first step towards being able to ask questions about impact and effectiveness, here we ask: 'What makes a visualization memorable?' We ran the largest scale visualization study to date using 2,070 single-panel visualizations, categorized with visualization type (e.g., bar chart, line graph, etc.), collected from news media sites, government reports, scientific journals, and infographic sources. Each visualization was annotated with additional attributes, including ratings for data-ink ratios and visual densities. Using Amazon's Mechanical Turk, we collected memorability scores for hundreds of these visualizations, and discovered that observers are consistent in which visualizations they find memorable and forgettable. We find intuitive results (e.g., attributes like color and the inclusion of a human recognizable object enhance memorability) and less intuitive results (e.g., common graphs are less memorable than unique visualization types). Altogether our findings suggest that quantifying memorability is a general metric of the utility of information, an essential step towards determining how to design effective visualizations.

504 citations


Journal ArticleDOI
TL;DR: A new model is proposed that allows users to visually query taxi trips and is able to express a wide range of spatio-temporal queries, and it is flexible in that not only can queries be composed but also different aggregations and visual representations can be applied, allowing users to explore and compare results.
Abstract: As increasing volumes of urban data are captured and become available, new opportunities arise for data-driven analysis that can lead to improvements in the lives of citizens through evidence-based decision making and policies. In this paper, we focus on a particularly important urban data set: taxi trips. Taxis are valuable sensors and information associated with taxi trips can provide unprecedented insight into many different aspects of city life, from economic activity and human behavior to mobility patterns. But analyzing these data presents many challenges. The data are complex, containing geographical and temporal components in addition to multiple variables associated with each trip. Consequently, it is hard to specify exploratory queries and to perform comparative analyses (e.g., compare different regions over time). This problem is compounded due to the size of the data-there are on average 500,000 taxi trips each day in NYC. We propose a new model that allows users to visually query taxi trips. Besides standard analytics queries, the model supports origin-destination queries that enable the study of mobility across the city. We show that this model is able to express a wide range of spatio-temporal queries, and it is also flexible in that not only can queries be composed but also different aggregations and visual representations can be applied, allowing users to explore and compare results. We have built a scalable system that implements this model which supports interactive response times; makes use of an adaptive level-of-detail rendering strategy to generate clutter-free visualization for large results; and shows hidden details to the users in a summary through the use of overlay heat maps. We present a series of case studies motivated by traffic engineers and economists that show how our model and system enable domain experts to perform tasks that were previously unattainable for them.

475 citations


Journal ArticleDOI
TL;DR: This survey studies existing methods for visualization and interactive visual analysis of multifaceted scientific data and suggests new solutions for multirun and multimodel data as well as techniques that support a multitude of facets.
Abstract: Visualization and visual analysis play important roles in exploring, analyzing, and presenting scientific data. In many disciplines, data and model scenarios are becoming multifaceted: data are often spatiotemporal and multivariate; they stem from different data sources (multimodal data), from multiple simulation runs (multirun/ensemble data), or from multiphysics simulations of interacting phenomena (multimodel data resulting from coupled simulation models). Also, data can be of different dimensionality or structured on various types of grids that need to be related or fused in the visualization. This heterogeneity of data characteristics presents new opportunities as well as technical challenges for visualization research. Visualization and interaction techniques are thus often combined with computational analysis. In this survey, we study existing methods for visualization and interactive visual analysis of multifaceted scientific data. Based on a thorough literature review, a categorization of approaches is proposed. We cover a wide range of fields and discuss to which degree the different challenges are matched with existing solutions for visualization and visual analysis. This leads to conclusions with respect to promising research directions, for instance, to pursue new solutions for multirun and multimodel data as well as techniques that support a multitude of facets.

359 citations


Journal ArticleDOI
TL;DR: An interactive system for visual analysis of urban traffic congestion based on GPS trajectories that provides multiple views for visually exploring and analyzing the traffic condition of a large city as a whole, on the level of propagation graphs, and on road segment level.
Abstract: In this work, we present an interactive system for visual analysis of urban traffic congestion based on GPS trajectories. For these trajectories we develop strategies to extract and derive traffic jam information. After cleaning the trajectories, they are matched to a road network. Subsequently, traffic speed on each road segment is computed and traffic jam events are automatically detected. Spatially and temporally related events are concatenated in, so-called, traffic jam propagation graphs. These graphs form a high-level description of a traffic jam and its propagation in time and space. Our system provides multiple views for visually exploring and analyzing the traffic condition of a large city as a whole, on the level of propagation graphs, and on road segment level. Case studies with 24 days of taxi GPS trajectories collected in Beijing demonstrate the effectiveness of our system.

315 citations


Journal ArticleDOI
TL;DR: This paper proposes LineUp - a novel and scalable visualization technique that uses bar charts that enables users to interactively combine attributes and flexibly refine parameters to explore the effect of changes in the attribute combination.
Abstract: Rankings are a popular and universal approach to structuring otherwise unorganized collections of items by computing a rank for each item based on the value of one or more of its attributes. This allows us, for example, to prioritize tasks or to evaluate the performance of products relative to each other. While the visualization of a ranking itself is straightforward, its interpretation is not, because the rank of an item represents only a summary of a potentially complicated relationship between its attributes and those of the other items. It is also common that alternative rankings exist which need to be compared and analyzed to gain insight into how multiple heterogeneous attributes affect the rankings. Advanced visual exploration tools are needed to make this process efficient. In this paper we present a comprehensive analysis of requirements for the visualization of multi-attribute rankings. Based on these considerations, we propose LineUp - a novel and scalable visualization technique that uses bar charts. This interactive technique supports the ranking of items based on multiple heterogeneous attributes with different scales and semantics. It enables users to interactively combine attributes and flexibly refine parameters to explore the effect of changes in the attribute combination. This process can be employed to derive actionable insights as to which attributes of an item need to be modified in order for its rank to change. Additionally, through integration of slope graphs, LineUp can also be used to compare multiple alternative rankings on the same set of items, for example, over time or across different attribute combinations. We evaluate the effectiveness of the proposed multi-attribute visualization technique in a qualitative study. The study shows that users are able to successfully solve complex ranking tasks in a short period of time.

296 citations


Journal ArticleDOI
TL;DR: An assessment of the state and historic development of evaluation practices as reported in papers published at the IEEE Visualization conference found that evaluations specific to assessing resulting images and algorithm performance are the most prevalent and generally the studies reporting requirements analyses and domain-specific work practices are too informally reported.
Abstract: We present an assessment of the state and historic development of evaluation practices as reported in papers published at the IEEE Visualization conference. Our goal is to reflect on a meta-level about evaluation in our community through a systematic understanding of the characteristics and goals of presented evaluations. For this purpose we conducted a systematic review of ten years of evaluations in the published papers using and extending a coding scheme previously established by Lam et al. [2012]. The results of our review include an overview of the most common evaluation goals in the community, how they evolved over time, and how they contrast or align to those of the IEEE Information Visualization conference. In particular, we found that evaluations specific to assessing resulting images and algorithm performance are the most prevalent (with consistently 80-90% of all papers since 1997). However, especially over the last six years there is a steady increase in evaluation methods that include participants, either by evaluating their performances and subjective feedback or by evaluating their work practices and their improved analysis and reasoning capabilities using visual tools. Up to 2010, this trend in the IEEE Visualization conference was much more pronounced than in the IEEE Information Visualization conference which only showed an increasing percentage of evaluation through user performance and experience testing. Since 2011, however, also papers in IEEE Information Visualization show such an increase of evaluations of work practices and analysis as well as reasoning using visual tools. Further, we found that generally the studies reporting requirements analyses and domain-specific work practices are too informally reported which hinders cross-comparison and lowers external validity.

283 citations


Journal ArticleDOI
TL;DR: This work shows how to construct a data cube that fits in a modern laptop's main memory, even for billions of entries, and calls this data structure a nanocube; it can be used to generate well-known visual encodings such as heatmaps, histograms, and parallel coordinate plots.
Abstract: Consider real-time exploration of large multidimensional spatiotemporal datasets with billions of entries, each defined by a location, a time, and other attributes. Are certain attributes correlated spatially or temporally? Are there trends or outliers in the data? Answering these questions requires aggregation over arbitrary regions of the domain and attributes of the data. Many relational databases implement the well-known data cube aggregation operation, which in a sense precomputes every possible aggregate query over the database. Data cubes are sometimes assumed to take a prohibitively large amount of space, and to consequently require disk storage. In contrast, we show how to construct a data cube that fits in a modern laptop's main memory, even for billions of entries; we call this data structure a nanocube. We present algorithms to compute and query a nanocube, and show how it can be used to generate well-known visual encodings such as heatmaps, histograms, and parallel coordinate plots. When compared to exact visualizations created by scanning an entire dataset, nanocube plots have bounded screen error across a variety of scales, thanks to a hierarchical structure in space and time. We demonstrate the effectiveness of our technique on a variety of real-world datasets, and present memory, timing, and network bandwidth measurements. We find that the timings for the queries in our examples are dominated by network and user-interaction latencies.

279 citations


Journal ArticleDOI
TL;DR: This paper presents a series of user-driven data simplifications that allow researchers to pare event records down to their core elements, and presents a novel metric for measuring visual complexity, and a language for codifying disjoint strategies into an overarching simplification framework.
Abstract: Electronic Health Records (EHRs) have emerged as a cost-effective data source for conducting medical research. The difficulty in using EHRs for research purposes, however, is that both patient selection and record analysis must be conducted across very large, and typically very noisy datasets. Our previous work introduced EventFlow, a visualization tool that transforms an entire dataset of temporal event records into an aggregated display, allowing researchers to analyze population-level patterns and trends. As datasets become larger and more varied, however, it becomes increasingly difficult to provide a succinct, summarizing display. This paper presents a series of user-driven data simplifications that allow researchers to pare event records down to their core elements. Furthermore, we present a novel metric for measuring visual complexity, and a language for codifying disjoint strategies into an overarching simplification framework. These simplifications were used by real-world researchers to gain new and valuable insights from initially overwhelming datasets.

262 citations


Journal ArticleDOI
TL;DR: This work proposes a reliable and flexible visual analytics system for topic modeling called UTOPIAN (User-driven Topic modeling based on Interactive Nonnegative Matrix Factorization), which enables users to interact with the topic modeling method and steer the result in a user-driven manner.
Abstract: Topic modeling has been widely used for analyzing text document collections. Recently, there have been significant advancements in various topic modeling techniques, particularly in the form of probabilistic graphical modeling. State-of-the-art techniques such as Latent Dirichlet Allocation (LDA) have been successfully applied in visual text analytics. However, most of the widely-used methods based on probabilistic modeling have drawbacks in terms of consistency from multiple runs and empirical convergence. Furthermore, due to the complicatedness in the formulation and the algorithm, LDA cannot easily incorporate various types of user feedback. To tackle this problem, we propose a reliable and flexible visual analytics system for topic modeling called UTOPIAN (User-driven Topic modeling based on Interactive Nonnegative Matrix Factorization). Centered around its semi-supervised formulation, UTOPIAN enables users to interact with the topic modeling method and steer the result in a user-driven manner. We demonstrate the capability of UTOPIAN via several usage scenarios with real-world document corpuses such as InfoVis/VAST paper data set and product review data sets.

Journal ArticleDOI
TL;DR: This paper presents a taxonomy of the 2D NPR algorithms developed over the past two decades, structured according to the design characteristics and behavior of each technique, and describes a chronology of development from the semiautomatic paint systems of the early nineties, through to the automated painterly rendering system of the late nineties driven by image gradient analysis.
Abstract: This paper surveys the field of nonphotorealistic rendering (NPR), focusing on techniques for transforming 2D input (images and video) into artistically stylized renderings. We first present a taxonomy of the 2D NPR algorithms developed over the past two decades, structured according to the design characteristics and behavior of each technique. We then describe a chronology of development from the semiautomatic paint systems of the early nineties, through to the automated painterly rendering systems of the late nineties driven by image gradient analysis. Two complementary trends in the NPR literature are then addressed, with reference to our taxonomy. First, the fusion of higher level computer vision and NPR, illustrating the trends toward scene analysis to drive artistic abstraction and diversity of style. Second, the evolution of local processing approaches toward edge-aware filtering for real-time stylization of images and video. The survey then concludes with a discussion of open challenges for 2D NPR identified in recent NPR symposia, including topics such as user and aesthetic evaluation.

Journal ArticleDOI
TL;DR: Results demonstrate that full body ownership illusions can lead to substantial behavioral and possibly cognitive changes depending on the appearance of the virtual body, which could be important for many applications such as learning, education, training, psychotherapy and rehabilitation using IVR.
Abstract: It has been shown that it is possible to generate perceptual illusions of ownership in immersive virtual reality (IVR) over a virtual body seen from first person perspective, in other words over a body that visually substitutes the person's real body. This can occur even when the virtual body is quite different in appearance from the person's real body. However, investigation of the psychological, behavioral and attitudinal consequences of such body transformations remains an interesting problem with much to be discovered. Thirty six Caucasian people participated in a between-groups experiment where they played a West-African Djembe hand drum while immersed in IVR and with a virtual body that substituted their own. The virtual hand drum was registered with a physical drum. They were alongside a virtual character that played a drum in a supporting, accompanying role. In a baseline condition participants were represented only by plainly shaded white hands, so that they were able merely to play. In the experimental condition they were represented either by a casually dressed dark-skinned virtual body (Casual Dark-Skinned - CD) or by a formal suited light-skinned body (Formal Light-Skinned - FL). Although participants of both groups experienced a strong body ownership illusion towards the virtual body, only those with the CD representation showed significant increases in their movement patterns for drumming compared to the baseline condition and compared with those embodied in the FL body. Moreover, the stronger the illusion of body ownership in the CD condition, the greater this behavioral change. A path analysis showed that the observed behavioral changes were a function of the strength of the illusion of body ownership towards the virtual body and its perceived appropriateness for the drumming task. These results demonstrate that full body ownership illusions can lead to substantial behavioral and possibly cognitive changes depending on the appearance of the virtual body. This could be important for many applications such as learning, education, training, psychotherapy and rehabilitation using IVR.

Journal ArticleDOI
TL;DR: A novel immersive telepresence system that allows distributed groups of users to meet in a shared virtual 3D world based on two coupled projection-based multi-user setups that indicates the mutual understanding of pointing and tracing gestures independent of whether they were performed by local or remote participants.
Abstract: We present a novel immersive telepresence system that allows distributed groups of users to meet in a shared virtual 3D world. Our approach is based on two coupled projection-based multi-user setups, each providing multiple users with perspectively correct stereoscopic images. At each site the users and their local interaction space are continuously captured using a cluster of registered depth and color cameras. The captured 3D information is transferred to the respective other location, where the remote participants are virtually reconstructed. We explore the use of these virtual user representations in various interaction scenarios in which local and remote users are face-to-face, side-by-side or decoupled. Initial experiments with distributed user groups indicate the mutual understanding of pointing and tracing gestures independent of whether they were performed by local or remote participants. Our users were excited about the new possibilities of jointly exploring a virtual city, where they relied on a world-in-miniature metaphor for mutual awareness of their respective locations.

Journal ArticleDOI
TL;DR: The goal is to promote further research in the field by creating a common repository of techniques to compute the HHD as well as a large collection of example applications in a broad range of areas.
Abstract: The Helmholtz-Hodge Decomposition (HHD) describes the decomposition of a flow field into its divergence-free and curl-free components. Many researchers in various communities like weather modeling, oceanology, geophysics, and computer graphics are interested in understanding the properties of flow representing physical phenomena such as incompressibility and vorticity. The HHD has proven to be an important tool in the analysis of fluids, making it one of the fundamental theorems in fluid dynamics. The recent advances in the area of flow analysis have led to the application of the HHD in a number of research communities such as flow visualization, topological analysis, imaging, and robotics. However, because the initial body of work, primarily in the physics communities, research on the topic has become fragmented with different communities working largely in isolation often repeating and sometimes contradicting each others results. Additionally, different nomenclature has evolved which further obscures the fundamental connections between fields making the transfer of knowledge difficult. This survey attempts to address these problems by collecting a comprehensive list of relevant references and examining them using a common terminology. A particular focus is the discussion of boundary conditions when computing the HHD. The goal is to promote further research in the field by creating a common repository of techniques to compute the HHD as well as a large collection of example applications in a broad range of areas.

Journal ArticleDOI
TL;DR: The proposed design space consists of five design dimensions that characterize the main aspects of tasks and that have so far been distributed across different task descriptions and is exemplified by applying its design space in the domain of climate impact research.
Abstract: Knowledge about visualization tasks plays an important role in choosing or building suitable visual representations to pursue them. Yet, tasks are a multi-faceted concept and it is thus not surprising that the many existing task taxonomies and models all describe different aspects of tasks, depending on what these task descriptions aim to capture. This results in a clear need to bring these different aspects together under the common hood of a general design space of visualization tasks, which we propose in this paper. Our design space consists of five design dimensions that characterize the main aspects of tasks and that have so far been distributed across different task descriptions. We exemplify its concrete use by applying our design space in the domain of climate impact research. To this end, we propose interfaces to our design space for different user roles (developers, authors, and end users) that allow users of different levels of expertise to work with it.

Journal ArticleDOI
TL;DR: A generalization of functional data depth to contours is presented and methods for displaying the resulting boxplots for two-dimensional simulation data in weather forecasting and computational fluid dynamics are demonstrated.
Abstract: Ensembles of numerical simulations are used in a variety of applications, such as meteorology or computational solid mechanics, in order to quantify the uncertainty or possible error in a model or simulation. Deriving robust statistics and visualizing the variability of an ensemble is a challenging task and is usually accomplished through direct visualization of ensemble members or by providing aggregate representations such as an average or pointwise probabilities. In many cases, the interesting quantities in a simulation are not dense fields, but are sets of features that are often represented as thresholds on physical or derived quantities. In this paper, we introduce a generalization of boxplots, called contour boxplots, for visualization and exploration of ensembles of contours or level sets of functions. Conventional boxplots have been widely used as an exploratory or communicative tool for data analysis, and they typically show the median, mean, confidence intervals, and outliers of a population. The proposed contour boxplots are a generalization of functional boxplots, which build on the notion of data depth. Data depth approximates the extent to which a particular sample is centrally located within its density function. This produces a center-outward ordering that gives rise to the statistical quantities that are essential to boxplots. Here we present a generalization of functional data depth to contours and demonstrate methods for displaying the resulting boxplots for two-dimensional simulation data in weather forecasting and computational fluid dynamics.

Journal ArticleDOI
TL;DR: An efficient optimization approach is proposed to generating an aesthetically appealing storyline visualization, which effectively handles the hierarchical relationships between entities over time, thus enabling users to better understand and track how the story evolves.
Abstract: Storyline visualizations, which are useful in many applications, aim to illustrate the dynamic relationships between entities in a story. However, the growing complexity and scalability of stories pose great challenges for existing approaches. In this paper, we propose an efficient optimization approach to generating an aesthetically appealing storyline visualization, which effectively handles the hierarchical relationships between entities over time. The approach formulates the storyline layout as a novel hybrid optimization approach that combines discrete and continuous optimization. The discrete method generates an initial layout through the ordering and alignment of entities, and the continuous method optimizes the initial layout to produce the optimal one. The efficient approach makes real-time interactions (e.g., bundling and straightening) possible, thus enabling users to better understand and track how the story evolves. Experiments and case studies are conducted to demonstrate the effectiveness and usefulness of the optimization approach.

Journal ArticleDOI
TL;DR: A graph-driven approach for automatically identifying effective sequences in a set of visualizations to be presented linearly and prioritizes local (visualization-to-visualization) transitions based on an objective function that minimizes the cost of transitions from the audience perspective is proposed.
Abstract: Conveying a narrative with visualizations often requires choosing an order in which to present visualizations. While evidence exists that narrative sequencing in traditional stories can affect comprehension and memory, little is known about how sequencing choices affect narrative visualization. We consider the forms and reactions to sequencing in narrative visualization presentations to provide a deeper understanding with a focus on linear, 'slideshow-style' presentations. We conduct a qualitative analysis of 42 professional narrative visualizations to gain empirical knowledge on the forms that structure and sequence take. Based on the results of this study we propose a graph-driven approach for automatically identifying effective sequences in a set of visualizations to be presented linearly. Our approach identifies possible transitions in a visualization set and prioritizes local (visualization-to-visualization) transitions based on an objective function that minimizes the cost of transitions from the audience perspective. We conduct two studies to validate this function. We also expand the approach with additional knowledge of user preferences for different types of local transitions and the effects of global sequencing strategies on memory, preference, and comprehension. Our results include a relative ranking of types of visualization transitions by the audience perspective and support for memory and subjective rating benefits of visualization sequences that use parallelism as a structural device. We discuss how these insights can guide the design of narrative visualization and systems that support optimization of visualization sequence.

Journal ArticleDOI
TL;DR: It is revealed that 2D scatterplots are often 'good enough', that is, neither SPLOM nor interactive 3D adds notably more cluster separability with the chosen DR technique.
Abstract: To verify cluster separation in high-dimensional data, analysts often reduce the data with a dimension reduction (DR) technique, and then visualize it with 2D Scatterplots, interactive 3D Scatterplots, or Scatterplot Matrices (SPLOMs). With the goal of providing guidance between these visual encoding choices, we conducted an empirical data study in which two human coders manually inspected a broad set of 816 scatterplots derived from 75 datasets, 4 DR techniques, and the 3 previously mentioned scatterplot techniques. Each coder scored all color-coded classes in each scatterplot in terms of their separability from other classes. We analyze the resulting quantitative data with a heatmap approach, and qualitatively discuss interesting scatterplot examples. Our findings reveal that 2D scatterplots are often 'good enough', that is, neither SPLOM nor interactive 3D adds notably more cluster separability with the chosen DR technique. If 2D is not good enough, the most promising approach is to use an alternative DR technique in 2D. Beyond that, SPLOM occasionally adds additional value, and interactive 3D rarely helps but often hurts in terms of poorer class separation and usability. We summarize these results as a workflow model and implications for design. Our results offer guidance to analysts during the DR exploration process.

Journal ArticleDOI
TL;DR: FootballStories, a visualization interface to support analysts in exploring soccer data and communicating interesting insights, is presented, which resulted in a series of four articles on soccer tactics, by a tactics analyst, who said he would not have been able to write these otherwise.
Abstract: This article presents SoccerStories, a visualization interface to support analysts in exploring soccer data and communicating interesting insights. Currently, most analyses on such data relate to statistics on individual players or teams. However, soccer analysts we collaborated with consider that quantitative analysis alone does not convey the right picture of the game, as context, player positions and phases of player actions are the most relevant aspects. We designed SoccerStories to support the current practice of soccer analysts and to enrich it, both in the analysis and communication stages. Our system provides an overview+detail interface of game phases, and their aggregation into a series of connected visualizations, each visualization being tailored for actions such as a series of passes or a goal attempt. To evaluate our tool, we ran two qualitative user studies on recent games using SoccerStories with data from one of the world's leading live sports data providers. The first study resulted in a series of four articles on soccer tactics, by a tactics analyst, who said he would not have been able to write these otherwise. The second study consisted in an exploratory follow-up to investigate design alternatives for embedding soccer phases into word-sized graphics. For both experiments, we received a very enthusiastic feedback and participants consider further use of SoccerStories to enhance their current workflow.

Journal ArticleDOI
TL;DR: SketchStory is presented, a data-enabled digital whiteboard that facilitates the creation of personalized and expressive data charts quickly and easily and allows the presenter to move and resize the completed data charts with touch, and filter the underlying data to facilitate interactive exploration.
Abstract: Presenting and communicating insights to an audience-telling a story-is one of the main goals of data exploration. Even though visualization as a storytelling medium has recently begun to gain attention, storytelling is still underexplored in information visualization and little research has been done to help people tell their stories with data. To create a new, more engaging form of storytelling with data, we leverage and extend the narrative storytelling attributes of whiteboard animation with pen and touch interactions. We present SketchStory, a data-enabled digital whiteboard that facilitates the creation of personalized and expressive data charts quickly and easily. SketchStory recognizes a small set of sketch gestures for chart invocation, and automatically completes charts by synthesizing the visuals from the presenter-provided example icon and binding them to the underlying data. Furthermore, SketchStory allows the presenter to move and resize the completed data charts with touch, and filter the underlying data to facilitate interactive exploration. We conducted a controlled experiment for both audiences and presenters to compare SketchStory with a traditional presentation system, Microsoft PowerPoint. Results show that the audience is more engaged by presentations done with SketchStory than PowerPoint. Eighteen out of 24 audience participants preferred SketchStory to PowerPoint. Four out of five presenter participants also favored SketchStory despite the extra effort required for presentation.

Journal ArticleDOI
TL;DR: A functional taxonomy of interaction primitives for map-based visualization is developed that offers an empirically-derived and ecologically-valid structure to inform future research and design on interaction.
Abstract: Proposals to establish a 'science of interaction' have been forwarded from Information Visualization and Visual Analytics, as well as Cartography, Geovisualization, and GIScience. This paper reports on two studies to contribute to this call for an interaction science, with the goal of developing a functional taxonomy of interaction primitives for map-based visualization. A semi-structured interview study first was conducted with 21 expert interactive map users to understand the way in which map-based visualizations currently are employed. The interviews were transcribed and coded to identify statements representative of either the task the user wished to accomplish (i.e., objective primitives) or the interactive functionality included in the visualization to achieve this task (i.e., operator primitives). A card sorting study then was conducted with 15 expert interactive map designers to organize these example statements into logical structures based on their experience translating client requests into interaction designs. Example statements were supplemented with primitive definitions in the literature and were separated into two sorting exercises: objectives and operators. The objective sort suggested five objectives that increase in cognitive sophistication (identify, compare, rank, associate, & delineate), but exhibited a large amount of variation across participants due to consideration of broader user goals (procure, predict, & prescribe) and interaction operands (space-alone, attributes-in-space, & space-in-time; elementary & general). The operator sort suggested five enabling operators (import, export, save, edit, & annotate) and twelve work operators (reexpress, arrange, sequence, resymbolize, overlay, pan, zoom, reproject, search, filter, retrieve, & calculate). This taxonomy offers an empirically-derived and ecologically-valid structure to inform future research and design on interaction.

Journal ArticleDOI
TL;DR: The higher task performance of participants in the synchronous condition indicates that people are able to quickly learn how to remap normal degrees of bodily freedom in order to control virtual bodies that differ from the humanoid form.
Abstract: This paper explores body ownership and control of an 'extended' humanoid avatar that features a distinct and flexible tail-like appendage protruding from its coccyx. Thirty-two participants took part in a between-groups study to puppeteer the avatar in an immersive CAVETM -like system. Participantsa' body movement was tracked, and the avatara's humanoid body synchronously reflected this motion. However, sixteen participants experienced the avatara's tail moving around randomly and asynchronous to their own movement, while the other participants experienced a tail that they could, potentially, control accurately and synchronously through hip movement. Participants in the synchronous condition experienced a higher degree of body ownership and agency, suggesting that visuomotor synchrony enhanced the probability of ownership over the avatar body despite of its extra-human form. Participants experiencing body ownership were also more likely to be more anxious and attempt to avoid virtual threats to the tail and body. The higher task performance of participants in the synchronous condition indicates that people are able to quickly learn how to remap normal degrees of bodily freedom in order to control virtual bodies that differ from the humanoid form. We discuss the implications and applications of extended humanoid avatars as a method for exploring the plasticity of the braina's representation of the body and for gestural human-computer interfaces.

Journal ArticleDOI
TL;DR: A case study is presented that showcases how HierarchicalTopics aid expert users in making sense of a large number of topics and discovering interesting patterns of topic groups, and a user study is conducted to quantitatively evaluate the effect of hierarchical topic structure.
Abstract: Analyzing large textual collections has become increasingly challenging given the size of the data available and the rate that more data is being generated. Topic-based text summarization methods coupled with interactive visualizations have presented promising approaches to address the challenge of analyzing large text corpora. As the text corpora and vocabulary grow larger, more topics need to be generated in order to capture the meaningful latent themes and nuances in the corpora. However, it is difficult for most of current topic-based visualizations to represent large number of topics without being cluttered or illegible. To facilitate the representation and navigation of a large number of topics, we propose a visual analytics system - HierarchicalTopic (HT). HT integrates a computational algorithm, Topic Rose Tree, with an interactive visual interface. The Topic Rose Tree constructs a topic hierarchy based on a list of topics. The interactive visual interface is designed to present the topic content as well as temporal evolution of topics in a hierarchical fashion. User interactions are provided for users to make changes to the topic hierarchy based on their mental model of the topic space. To qualitatively evaluate HT, we present a case study that showcases how HierarchicalTopics aid expert users in making sense of a large number of topics and discovering interesting patterns of topic groups. We have also conducted a user study to quantitatively evaluate the effect of hierarchical topic structure. The study results reveal that the HT leads to faster identification of large number of relevant topics. We have also solicited user feedback during the experiments and incorporated some suggestions into the current version of HierarchicalTopics.

Journal ArticleDOI
TL;DR: This paper describes how the framework supports different tasks in model building (e.g., validation and comparison), and presents an interactive workflow for feature subset selection, and reports feedback from domain experts after two months of deployment in the energy sector indicating a significant effort reduction for building and improving regression models.
Abstract: Regression models play a key role in many application domains for analyzing or predicting a quantitative dependent variable based on one or more independent variables. Automated approaches for building regression models are typically limited with respect to incorporating domain knowledge in the process of selecting input variables (also known as feature subset selection). Other limitations include the identification of local structures, transformations, and interactions between variables. The contribution of this paper is a framework for building regression models addressing these limitations. The framework combines a qualitative analysis of relationship structures by visualization and a quantification of relevance for ranking any number of features and pairs of features which may be categorical or continuous. A central aspect is the local approximation of the conditional target distribution by partitioning 1D and 2D feature domains into disjoint regions. This enables a visual investigation of local patterns and largely avoids structural assumptions for the quantitative ranking. We describe how the framework supports different tasks in model building (e.g., validation and comparison), and we present an interactive workflow for feature subset selection. A real-world case study illustrates the step-wise identification of a five-dimensional model for natural gas consumption. We also report feedback from domain experts after two months of deployment in the energy sector, indicating a significant effort reduction for building and improving regression models.

Journal ArticleDOI
TL;DR: ScatterBlogs2 is suggested, a new approach to let analysts build task-tailored message filters in an interactive and visual manner based on recorded messages of well-understood previous events that can be orchestrated and adapted afterwards for interactive, visual real-time monitoring and analysis of microblog feeds.
Abstract: The number of microblog posts published daily has reached a level that hampers the effective retrieval of relevant messages, and the amount of information conveyed through services such as Twitter is still increasing. Analysts require new methods for monitoring their topic of interest, dealing with the data volume and its dynamic nature. It is of particular importance to provide situational awareness for decision making in time-critical tasks. Current tools for monitoring microblogs typically filter messages based on user-defined keyword queries and metadata restrictions. Used on their own, such methods can have drawbacks with respect to filter accuracy and adaptability to changes in trends and topic structure. We suggest ScatterBlogs2, a new approach to let analysts build task-tailored message filters in an interactive and visual manner based on recorded messages of well-understood previous events. These message filters include supervised classification and query creation backed by the statistical distribution of terms and their co-occurrences. The created filter methods can be orchestrated and adapted afterwards for interactive, visual real-time monitoring and analysis of microblog feeds. We demonstrate the feasibility of our approach for analyzing the Twitter stream in emergency management scenarios.

Journal ArticleDOI
TL;DR: It is shown how Splatterplots can be an effective alternative to traditional methods of displaying scatter data communicating data trends, outliers, and data set relationships much like traditional scatter plots, but scaling to data sets of higher density and up to millions of points on the screen.
Abstract: We introduce Splatterplots, a novel presentation of scattered data that enables visualizations that scale beyond standard scatter plots. Traditional scatter plots suffer from overdraw (overlapping glyphs) as the number of points per unit area increases. Overdraw obscures outliers, hides data distributions, and makes the relationship among subgroups of the data difficult to discern. To address these issues, Splatterplots abstract away information such that the density of data shown in any unit of screen space is bounded, while allowing continuous zoom to reveal abstracted details. Abstraction automatically groups dense data points into contours and samples remaining points. We combine techniques for abstraction with perceptually based color blending to reveal the relationship between data subgroups. The resulting visualizations represent the dense regions of each subgroup of the data set as smooth closed shapes and show representative outliers explicitly. We present techniques that leverage the GPU for Splatterplot computation and rendering, enabling interaction with massive data sets. We show how Splatterplots can be an effective alternative to traditional methods of displaying scatter data communicating data trends, outliers, and data set relationships much like traditional scatter plots, but scaling to data sets of higher density and up to millions of points on the screen.

Journal ArticleDOI
TL;DR: An interaction model for beyond-desktop visualizations that combines the visualization reference model with the instrumental interaction paradigm is presented and a modified pipeline model where raw data is processed into a visualization and then rendered into the physical world is described.
Abstract: We present an interaction model for beyond-desktop visualizations that combines the visualization reference model with the instrumental interaction paradigm. Beyond-desktop visualizations involve a wide range of emerging technologies such as wall-sized displays, 3D and shape-changing displays, touch and tangible input, and physical information visualizations. While these technologies allow for new forms of interaction, they are often studied in isolation. New conceptual models are needed to build a coherent picture of what has been done and what is possible. We describe a modified pipeline model where raw data is processed into a visualization and then rendered into the physical world. Users can explore or change data by directly manipulating visualizations or through the use of instruments. Interactions can also take place in the physical world outside the visualization system, such as when using locomotion to inspect a large scale visualization. Through case studies we illustrate how this model can be used to describe both conventional and unconventional interactive visualization systems, and compare different design alternatives.

Journal ArticleDOI
TL;DR: This paper presents the first method for full-body trajectory optimization of physics-based human motion that does not rely on motion capture, specified key-poses, or periodic motion, and shows that the method can synthesize many different kinds of movement.
Abstract: This paper presents the first method for full-body trajectory optimization of physics-based human motion that does not rely on motion capture, specified key-poses, or periodic motion. Optimization is performed using a small set of simple goals, for example, one hand should be on the ground, or the center-of-mass should be above a particular height. These objectives are applied to short spacetime windows which can be composed to express goals over an entire animation. Specific contact locations needed to achieve objectives are not required by our method. We show that the method can synthesize many different kinds of movement, including walking, hand walking, breakdancing, flips, and crawling. Most of these movements have never been previously synthesized by physics-based methods.