scispace - formally typeset
Search or ask a question
JournalISSN: 1751-956X

Iet Intelligent Transport Systems 

Institution of Engineering and Technology
About: Iet Intelligent Transport Systems is an academic journal published by Institution of Engineering and Technology. The journal publishes majorly in the area(s): Computer science & Intelligent transportation system. It has an ISSN identifier of 1751-956X. It is also open access. Over the lifetime, 1597 publications have been published receiving 26721 citations. The journal is also known as: IET Intell. Transp. Syst. & Intelligent transport systems.


Papers
More filters
Journal ArticleDOI
Zheng Zhao1, Weihai Chen1, Xingming Wu1, Peter C. Y. Chen, Jingmeng Liu1 
TL;DR: A novel traffic forecast model based on long short-term memory (LSTM) network is proposed, which considers temporal-spatial correlation in traffic system via a two-dimensional network which is composed of many memory units.
Abstract: Short-term traffic forecast is one of the essential issues in intelligent transportation system. Accurate forecast result enables commuters make appropriate travel modes, travel routes, and departure time, which is meaningful in traffic management. To promote the forecast accuracy, a feasible way is to develop a more effective approach for traffic data analysis. The availability of abundant traffic data and computation power emerge in recent years, which motivates us to improve the accuracy of short-term traffic forecast via deep learning approaches. A novel traffic forecast model based on long short-term memory (LSTM) network is proposed. Different from conventional forecast models, the proposed LSTM network considers temporal-spatial correlation in traffic system via a two-dimensional network which is composed of many memory units. A comparison with other representative forecast models validates that the proposed LSTM network can achieve a better performance.

1,204 citations

Journal ArticleDOI
TL;DR: Experimental results clearly demonstrate the advantages of multi-agent RL-based control over LQF governed isolated single-intersection control, thus paving the way for efficient distributed traffic signal control in complex settings.
Abstract: A challenging application of artificial intelligence systems involves the scheduling of traffic signals in multi-intersection vehicular networks. This paper introduces a novel use of a multi-agent system and reinforcement learning (RL) framework to obtain an efficient traffic signal control policy. The latter is aimed at minimising the average delay, congestion and likelihood of intersection cross-blocking. A five-intersection traffic network has been studied in which each intersection is governed by an autonomous intelligent agent. Two types of agents, a central agent and an outbound agent, were employed. The outbound agents schedule traffic signals by following the longest-queue-first (LQF) algorithm, which has been proved to guarantee stability and fairness, and collaborate with the central agent by providing it local traffic statistics. The central agent learns a value function driven by its local and neighbours' traffic conditions. The novel methodology proposed here utilises the Q-Learning algorithm with a feedforward neural network for value function approximation. Experimental results clearly demonstrate the advantages of multi-agent RL-based control over LQF governed isolated single-intersection control, thus paving the way for efficient distributed traffic signal control in complex settings.

463 citations

Journal ArticleDOI
TL;DR: A technique was developed that makes use of the global system for mobile communications (GSM) mobile phone network, and the flow of mobile phones in a cell-phone network is measured and correlated to traffic flow.
Abstract: Acquiring high-quality origin-destination (OD) information for traffic in a geographic area is both time consuming and expensive while using conventional methods such as household surveys or roadside monitoring. These methods generally present only a snapshot of traffic situation at a certain point in time, and they are updated in time intervals of up to several years. A technique was developed that makes use of the global system for mobile communications (GSM) mobile phone network. Instead of monitoring the flow of vehicles in a transportation network, the flow of mobile phones in a cell-phone network is measured and correlated to traffic flow. This methodology is based on the fact that a mobile phone moving on a specific route always tends to change the base station nearly at the same position. For a first pilot study, a GSM network simulator has been designed, where network data can be simulated, which is then extracted from the phone network, correlated, processed mathematically and converted into an OD matrix. Primary results show that the method has great potential, and the results inferred are much more cost-effective than those generated with traditional techniques. This is due to the fact that no change has to be made in the GSM network, because the information that is needed can readily be extracted from the base station database, that is the entire infrastructure needed is already in place

292 citations

Journal ArticleDOI
TL;DR: In this paper, two kinds of RL algorithms, deep policy-gradient and value-function-based agents, are proposed to predict the best traffic signal for a traffic intersection in a traffic simulator.
Abstract: Recent advances in combining deep neural network architectures with reinforcement learning (RL) techniques have shown promising potential results in solving complex control problems with high-dimensional state and action spaces. Inspired by these successes, in this study, the authors built two kinds of RL algorithms: deep policy-gradient (PG) and value-function-based agents which can predict the best possible traffic signal for a traffic intersection. At each time step, these adaptive traffic light control agents receive a snapshot of the current state of a graphical traffic simulator and produce control signals. The PG-based agent maps its observation directly to the control signal; however, the value-function-based agent first estimates values for all legal control signals. The agent then selects the optimal control action with the highest value. Their methods show promising results in a traffic network simulated in the simulation of urban mobility traffic simulator, without suffering from instability issues during the training process.

263 citations

Journal ArticleDOI
TL;DR: Real time driver health condition monitoring system with drowsiness alertness was proposed and the driver's health condition such as the normal, fatigued and drowsy states was analysed by evaluating the heart rate variability in the time and frequency domains.
Abstract: Real time driver health condition monitoring system with drowsiness alertness was proposed. A new embedded electrocardiogram (ECG) sensor with electrically conductive fabric electrodes on the steering wheel of a car was designed to monitor the driver's health condition. The ECG signals were measured at a sampling rate of 100 Hz from the driver's palms as they stay on a pair of conductive fabric electrodes located on the steering wheel. Practical tests were conducted using an embedded ECG sensor with a wireless sensor node, and their performance was assessed under non-stop 2 h driving test. The ECG signals were measured and transmitted wirelessly to a base station connected to a server PC in personal area network environment. The driver's health condition such as the normal, fatigued and drowsy states was analysed by evaluating the heart rate variability in the time and frequency domains.

206 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202374
2022172
2021144
2020230
2019207
2018168