scispace - formally typeset
Search or ask a question
JournalISSN: 1755-4535

Iet Power Electronics 

Institution of Engineering and Technology
About: Iet Power Electronics is an academic journal published by Institution of Engineering and Technology. The journal publishes majorly in the area(s): Voltage & Boost converter. It has an ISSN identifier of 1755-4535. It is also open access. Over the lifetime, 3540 publications have been published receiving 71576 citations. The journal is also known as: Institution of Engineering and Technology power electronics & Power electronics.


Papers
More filters
Journal ArticleDOI
TL;DR: A proper comparison is established among the most important non-isolated boost-based dc-dc converters regarding the voltage stress across the semiconductor elements, number of components and static gain.
Abstract: The major consideration in dc-dc conversion is often associated with high efficiency, reduced stresses involving semiconductors, low cost, simplicity and robustness of the involved topologies. In the last few years, high-step-up non-isolated dc-dc converters have become quite popular because of its wide applicability, especially considering that dc-ac converters must be typically supplied with high dc voltages. The conventional non-isolated boost converter is the most popular topology for this purpose, although the conversion efficiency is limited at high duty cycle values. In order to overcome such limitation and improve the conversion ratio, derived topologies can be found in numerous publications as possible solutions for the aforementioned applications. Within this context, this work intends to classify and review some of the most important non-isolated boost-based dc-dc converters. While many structures exist, they can be basically classified as converters with and without wide conversion ratio. Some of the main advantages and drawbacks regarding the existing approaches are also discussed. Finally, a proper comparison is established among the most significant converters regarding the voltage stress across the semiconductor elements, number of components and static gain.

459 citations

Journal ArticleDOI
TL;DR: A DC-DC converter topology is proposed, which combines the boost converter and the switched capacitor function to provide different output voltages and a self-balanced voltage using only one driven switch, one inductor, 2 diodes and 2 capacitors for an Nx MBC.
Abstract: A DC-DC converter topology is proposed. The DC-DC multilevel boost converter (MBC) is a pulse-width modulation (PWM)-based DC-DC converter, which combines the boost converter and the switched capacitor function to provide different output voltages and a self-balanced voltage using only one driven switch, one inductor, 2 N -1 diodes and 2 N -1 capacitors for an Nx MBC. It is proposed to be used as DC link in applications where several controlled voltage levels are required with self-balancing and unidirectional current flow, such as photovoltaic (PV) or fuel cell generation systems with multilevel inverters; each device blocks only one voltage level, achieving high-voltage converters with low-voltage devices. The major advantages of this topology are: a continuous input current, a large conversion ratio without extreme duty cycle and without transformer, which allow high switching frequency. It can be built in a modular way and more levels can be added without modifying the main circuit. The proposed converter is simulated and prototyped; experimental results prove the proposition's principle.

437 citations

Journal ArticleDOI
TL;DR: A comprehensive review of existing technological solutions for wireless power transfer used in electric vehicle battery chargers is given in this article, where the concept of each solution is thoroughly reviewed and the feasibility is evaluated considering the present limitations in power electronics technology, cost and consumer acceptance.
Abstract: In this study, a comprehensive review of existing technological solutions for wireless power transfer used in electric vehicle battery chargers is given. The concept of each solution is thoroughly reviewed and the feasibility is evaluated considering the present limitations in power electronics technology, cost and consumer acceptance. In addition, the challenges and advantages of each technology are discussed. Finally, a thorough comparison is made and a proposed mixed conductive/wireless charging system solution is suggested to solve the inherent existing problems.

370 citations

Journal ArticleDOI
TL;DR: The Fast Acting Static Synchronous Compensator (STATCOM) as discussed by the authors is a representative of FACTS family and is extensively used as the state-of-theart dynamic shunt compensator for reactive power control in transmission and distribution system.
Abstract: Fast acting static synchronous compensator (STATCOM), a representative of FACTS family, is a promising technology being extensively used as the state-of-the-art dynamic shunt compensator for reactive power control in transmission and distribution system. Over the last couple of decades, researchers and engineers have made path-breaking research on this technology and by virtue of which, many STATCOM controllers based on the self-commutating solid-state voltage-source converter (VSC) have been developed and commercially put in operation to control system dynamics under stressed conditions. Because of its many attributes, STATCOM has emerged as a qualitatively superior controller relative to the line commutating static VAR compensator (SVC). This controller is called with different terminologies as STATic COMpensator advanced static VAR compensator, advanced static VAR generator or static VAR generator, STATic CONdenser, synchronous solid-state VAR compensator, VSC-based SVC or self-commutated SVC or static synchronous compensator (SSC or S2C). The development of STATCOM controller employing various solid-state converter topologies, magnetics configurations, control algorithms, switching techniques and so on, has been well reported in literature with its versatile applications in power system. A review on the state-of-the-art STATCOM technology and further research potential are presented classifying more than 300 research publications.

368 citations

Journal ArticleDOI
TL;DR: In this paper, the operation, design and control of an isolated bidirectional DC-DC converter for hybrid electric vehicle energy management applications are discussed, and different operation modes and boundary conditions are distinguished by phase shift angle and load conditions.
Abstract: The operation, design and control of an isolated bidirectional DC - DC converter for hybrid electric vehicle energy management applications are discussed. Different operation modes and boundary conditions are distinguished by phase-shift angle and load conditions. The absolute and relative output voltage ripple was derived. The dead-band effect and safe operational area are further investigated. The relations between output power and leakage inductance and switching frequency are also presented. The proposed converter was simulated and a prototype was built and tested. Experiments on the converter's steady state and transient operations validated the design and simulation.

349 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023117
2022203
2021215
2020472
2019420
2018285