scispace - formally typeset
Search or ask a question
JournalISSN: 0262-8856

Image and Vision Computing 

Elsevier BV
About: Image and Vision Computing is an academic journal published by Elsevier BV. The journal publishes majorly in the area(s): Computer science & Artificial intelligence. It has an ISSN identifier of 0262-8856. Over the lifetime, 3482 publications have been published receiving 172781 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A review of recent as well as classic image registration methods to provide a comprehensive reference source for the researchers involved in image registration, regardless of particular application areas.
Abstract: This paper aims to present a review of recent as well as classic image registration methods. Image registration is the process of overlaying images (two or more) of the same scene taken at different times, from different viewpoints, and/or by different sensors. The registration geometrically align two images (the reference and sensed images). The reviewed approaches are classified according to their nature (areabased and feature-based) and according to four basic steps of image registration procedure: feature detection, feature matching, mapping function design, and image transformation and resampling. Main contributions, advantages, and drawbacks of the methods are mentioned in the paper. Problematic issues of image registration and outlook for the future research are discussed too. The major goal of the paper is to provide a comprehensive reference source for the researchers involved in image registration, regardless of particular application areas. q 2003 Elsevier B.V. All rights reserved.

6,842 citations

Journal ArticleDOI
TL;DR: The high utility of MSERs, multiple measurement regions and the robust metric is demonstrated in wide-baseline experiments on image pairs from both indoor and outdoor scenes.
Abstract: The wide-baseline stereo problem, i.e. the problem of establishing correspondences between a pair of images taken from different viewpoints is studied. A new set of image elements that are put into correspondence, the so called extremal regions , is introduced. Extremal regions possess highly desirable properties: the set is closed under (1) continuous (and thus projective) transformation of image coordinates and (2) monotonic transformation of image intensities. An efficient (near linear complexity) and practically fast detection algorithm (near frame rate) is presented for an affinely invariant stable subset of extremal regions, the maximally stable extremal regions (MSER). A new robust similarity measure for establishing tentative correspondences is proposed. The robustness ensures that invariants from multiple measurement regions (regions obtained by invariant constructions from extremal regions), some that are significantly larger (and hence discriminative) than the MSERs, may be used to establish tentative correspondences. The high utility of MSERs, multiple measurement regions and the robust metric is demonstrated in wide-baseline experiments on image pairs from both indoor and outdoor scenes. Significant change of scale (3.5×), illumination conditions, out-of-plane rotation, occlusion, locally anisotropic scale change and 3D translation of the viewpoint are all present in the test problems. Good estimates of epipolar geometry (average distance from corresponding points to the epipolar line below 0.09 of the inter-pixel distance) are obtained.

3,422 citations

Journal ArticleDOI
TL;DR: A new approach is proposed which works on range data directly and registers successive views with enough overlapping area to get an accurate transformation between views and is performed by minimizing a functional which does not require point-to-point matches.
Abstract: We study the problem of creating a complete model of a physical object. Although this may be possible using intensity images, we here use images which directly provide access to three dimensional information. The first problem that we need to solve is to find the transformation between the different views. Previous approaches either assume this transformation to be known (which is extremely difficult for a complete model), or compute it with feature matching (which is not accurate enough for integration). In this paper, we propose a new approach which works on range data directly and registers successive views with enough overlapping area to get an accurate transformation between views. This is performed by minimizing a functional which does not require point-to-point matches. We give the details of the registration method and modelling procedure and illustrate them on real range images of complex objects.

2,850 citations

Journal ArticleDOI
TL;DR: The FERET evaluation procedure is an independently administered test of face-recognition algorithms to allow a direct comparison between different algorithms and to assess the state of the art in face recognition.
Abstract: The Face Recognition Technology (FERET) program database is a large database of facial images, divided into development and sequestered portions. The development portion is made available to researchers, and the sequestered portion is reserved for testing facerecognition algorithms. The FERET evaluation procedure is an independently administered test of face-recognition algorithms. The test was designed to: (1) allow a direct comparison between different algorithms, (2) identify the most promising approaches, (3) assess the state of the art in face recognition, (4) identify future directions of research, and (5) advance the state of the art in face recognition.

2,494 citations

Journal ArticleDOI
TL;DR: A detailed overview of current advances in vision-based human action recognition is provided, including a discussion of limitations of the state of the art and outline promising directions of research.
Abstract: Vision-based human action recognition is the process of labeling image sequences with action labels. Robust solutions to this problem have applications in domains such as visual surveillance, video retrieval and human-computer interaction. The task is challenging due to variations in motion performance, recording settings and inter-personal differences. In this survey, we explicitly address these challenges. We provide a detailed overview of current advances in the field. Image representations and the subsequent classification process are discussed separately to focus on the novelties of recent research. Moreover, we discuss limitations of the state of the art and outline promising directions of research.

2,282 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023109
2022190
2021152
2020123
201992
201867