scispace - formally typeset
Search or ask a question
JournalISSN: 2050-4527

Immunity, inflammation and disease 

Wiley
About: Immunity, inflammation and disease is an academic journal published by Wiley. The journal publishes majorly in the area(s): Medicine & Internal medicine. It has an ISSN identifier of 2050-4527. It is also open access. Over the lifetime, 807 publications have been published receiving 6090 citations.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: Chronic rhinosinusitis with nasal polyps (CRSwNP) is characterized by type 2 inflammation with high levels of Th2 cytokines, and the presence of various types of ILC in CRS is poorly understood.
Abstract: Background Chronic rhinosinusitis (CRS) with nasal polyps (CRSwNP) is characterized by type 2 inflammation with high levels of Th2 cytokines. Although T helper cytokines are released from T cells, innate lymphoid cells (ILC) are also known to produce high levels of the same cytokines. However, the presence of various types of ILC in CRS is poorly understood. Objective The objective of this study was to fully characterize the presence of all ILC subsets in CRS and to identify phenotypical differences of group 2 ILC (ILC2) in CRSwNP compared to ILC2 from non-type 2 inflamed areas. Methods We investigated the presence of ILC subsets in peripheral blood mononuclear cells (PBMC) from healthy subjects, tonsil tissue, ethmoid tissue from control subjects and patients with non-polypoid CRS (CRSsNP) and CRSwNP, as well as nasal polyp (NP) tissue from CRSwNP by flow cytometry. Sorted ILC2 were cultured in the presence and absence of IL-33 and production of IL-5 and IL-13 was assessed by Luminex. Results We found that all ILC subsets were present in NP but ILC2 were dominant and significantly elevated compared to PBMC, tonsil, CRSsNP, and normal sinus tissue. We also found that inducible T-cell co-stimulator (ICOS) and side scatter were increased and CD127 was down-regulated in ILC2 from NP compared to blood or tonsil ILC2. Thymic stromal lymphopoietin, IL-7, and IL-33 were able to down-regulate expression of CD127 and increase side scatter in blood ILC2. Furthermore, sorted NP ILC2 but not blood ILC2 spontaneously released type 2 cytokines including IL-5 and IL-13. Conclusions and Clinical Relevance These results suggest that ILC2 are not only elevated but also activated in CRSwNP in vivo and that ILC2 may play important roles in the type 2 inflammation in CRSwNP.

107 citations

Journal ArticleDOI
TL;DR: The effects of high concentration multistrain probiotic on several aspects of intestinal immunity in ART‐experienced HIV‐1 patients was evaluated.
Abstract: Introduction HIV infection is characterized by a persistent immune activation associated to a compromised gut barrier immunity and alterations in the profile of the fecal flora linked with the progression of inflammatory symptoms. The effects of high concentration multistrain probiotic (Vivomixx®, Viale del Policlinico 155, Rome, Italy in EU; Visbiome®, Dupont, Madison, Wisconsin in USA) on several aspects of intestinal immunity in ART-experienced HIV-1 patients was evaluated. Methods A sub-study of a longitudinal pilot study was performed in HIV-1 patients who received the probiotic supplement twice a day for 6 months (T6). T-cell activation and CD4+ and CD8+ T-cell subsets expressing IFNγ (Th1, Tc1) or IL-17A (Th17, Tc17) were stained by cytoflorimetric analysis. Histological and immunohistochemical analyses were performed on intestinal biopsies while enterocytes apoptosis index was determined by TUNEL assay. Results A reduction in the frequencies of CD4+ and CD8+ T-cell subsets, expressing CD38+, HLA-DR+, or both, and an increase in the percentage of Th17 cell subsets, especially those with central or effector memory phenotype, was recorded in the peripheral blood and in gut-associated lymphoid tissue (GALT) after probiotic intervention. Conversely, Tc1 and Tc17 levels remained substantially unchanged at T6, while Th1 cell subsets increase in the GALT. Probiotic supplementation was also associated to a recovery of the integrity of the gut epithelial barrier, a reduction of both intraepithelial lymphocytes density and enterocyte apoptosis and, an improvement of mitochondrial morphology sustained in part by a modulation of heat shock protein 60. Conclusions These findings highlight the potential beneficial effects of probiotic supplementation for the reconstitution of physical and immunological integrity of the mucosal intestinal barrier in ART-treated HIV-1-positive patients.

78 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the impaired functional capacity of TNFR2‐deficient cells was independent of soluble factors but required membrane expression ofTNFR2, which determines generation and function of monocytic MDSC.
Abstract: TNF and TNF receptor type 2 (TNFR2) have been shown to be important for generation of myeloid-derived suppressor cells (MDSC). In order to analyze whether and how TNFR2 passes the effect of TNF on, myeloid cells from TNFR2-deficient mice were compared to respective cells from wild-type mice. Primary TNFR2-deficient myeloid cells showed reduced production of NO and IL-6 which was attributable to CD11b+ CD11c− Ly6C+ Ly6G− immature monocytic MDSC. TNFR2-deficient MDSC isolated from bone marrow were less suppressive for T cell proliferation compared to WT-derived MDSC. These differences on myeloid cells between the two mouse lines were still observed after co-culture of bone marrow cells from the two mouse lines together during myeloid cell differentiation, which demonstrated that the impaired functional capacity of TNFR2-deficient cells was independent of soluble factors but required membrane expression of TNFR2. Similarly, adoptive transfer of TNFR2-deficient bone marrow cells into wild-type hosts did not rescue the TNFR2-specific phenotype of bone marrow-derived myeloid cells. Therefore, membrane TNFR2 expression determines generation and function of monocytic MDSC.

77 citations

Journal ArticleDOI
TL;DR: Humanized mice engrafted with human immune systems support studies of human hematopoiesis and the immune response to human‐specific pathogens but have a severely restricted ability to undergo class switching and produce antigen‐specific IgG after infection or immunization.
Abstract: Introduction Immunodeficient mice engrafted with human immune systems support studies of human hematopoiesis and the immune response to human-specific pathogens. A significant limitation of these humanized mouse models is, however, a severely restricted ability of human B cells to undergo class switching and produce antigen-specific IgG after infection or immunization. Methods In this study, we have characterized the development and function of human B cells in NOD-scid IL2Rγnull (NSG) mice transgenically expressing human stem cell factor (SCF), granulocyte macrophage colony-stimulating factor (GM-CSF), and IL-3 (NSG-SGM3) following engraftment with human hematopoietic stem cells, autologous fetal liver, and thymic tissues (bone marrow, liver, thymus or BLT model). The NSG-SGM3 BLT mice engraft rapidly with human immune cells and develop T cells, B cells, and myeloid cells. Results A higher proportion of human B cells developing in NSG-SGM3 BLT mice had a mature/naive phenotype with a corresponding decrease in immature/transitional human B cells as compared to NSG BLT mice. In addition, NSG-SGM3 BLT mice have higher basal levels of human IgM and IgG as compared with NSG BLT mice. Moreover, dengue virus infection of NSG-SGM3 BLT mice generated higher levels of antigen-specific IgM and IgG, a result not observed in NSG BLT mice. Conclusions Our studies suggest that NSG-SGM3 BLT mice show improved human B cell development and permit the generation of antigen-specific antibody responses to viral infection.

77 citations

Journal ArticleDOI
TL;DR: It is hypothesized that HLA genotypes might impact on the differences in morbidity and mortality of COVID‐19 across countries, and the association between HLA gene polymorphisms and risk for CO VID‐19 has not been fully elucidated.
Abstract: Introduction The emergence of SARS-CoV-2 has caused global public health and economic crisis. Human leukocyte antigen (HLA) is a critical component of the viral antigen presentation pathway and plays essential roles in conferring differential viral susceptibility and severity of diseases. However, the association between HLA gene polymorphisms and risk for COVID-19 has not been fully elucidated. We hypothesized that HLA genotypes might impact on the differences in morbidity and mortality of COVID-19 across countries. Methods We conducted in silico analyses and examined an association of HLA gene polymorphisms with prevalence and mortality of COVID-19 by using publicly available databases. Results We found that a possible association between HLA-A*02:01 and an increased risk for COVID-19. HLA-A*02:01 had a relatively lower capacity to present SARS-CoV-2 antigens compared with other frequent HLA class I molecules, HLA-A*11:01 or HLA-A*24:02. Conclusion This study suggests that individuals with HLA-A*11:01 or HLA-A*24:02 genotypes may generate efficiently T-cell-mediated antiviral responses to SARS-CoV-2 compared with HLA-A*02:01. The differences in HLA genotypes may potentially alter the course of the disease and its transmission.

75 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023154
2022154
2021193
202082
201933
201840