scispace - formally typeset
Search or ask a question
JournalISSN: 0105-2896

Immunological Reviews 

Blackwell Publishing
About: Immunological Reviews is an academic journal published by Blackwell Publishing. The journal publishes majorly in the area(s): Immune system & Antigen. It has an ISSN identifier of 0105-2896. Over the lifetime, 4112 publications have been published receiving 461451 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper used hybridoma monoclonal antibodies obtained after immunization of mice with rat cells to study rat cell-surface antigens present on subpopulations of rat lymphocytes.
Abstract: Xenogeneic immunizations have the advantage of detecting a wide range of antigenic determinants because many commonly occurring proteins have diverged significantly during the course of evolution and are thus antigenic in other species. The broadness of xenogeneic responses, however, means that the antisera they produce are usually complex and require extensive absorptions to make them specific for a single antigen. This problem has now been overcome by generating hybridomas producing monoclonal antibodies (Kohler & Milstein 1975). These permit dissection ofthe xenogeneic response so that large amounts of individual antibodies can be obtained, each of which recognizes only one of the determinants recognized by a broadly reactive conventional antiserum. Williams et al. (1977) used hybridoma monoclonal antibodies obtained after immunizations of mice with rat cells to study rat cell-surface antigens present on subpopulations of rat lymphocytes, i.e., differentiation antigens. Springer et al. (1978a) and Stern et al. (1978) used a similar approach to study mouse lymphocyte antigens. They prepared monoclonal antibodies by immunizing rats with mouse lymphocytes and showed that these monoclonals recognized previously undetected mouse cell surface determinants including a glycoprotein antigen that appears to be specific for macrophages (Springer et al. 1978b). Trowbridge (1978) also used rat anti-mouse immunizations to generate a monoclonal antibody against the non-polymorphic lymphocyte surface antigen T200.

1,916 citations

Journal ArticleDOI
TL;DR: This review highlights how PD‐1 and its ligands defend against potentially pathogenic self‐reactive effector T cells by simultaneously harnessing two mechanisms of peripheral tolerance: (i) the promotion of Treg development and function and (ii) the direct inhibition of potentially pathogen self-reactive T cells that have escaped into the periphery.
Abstract: Regulatory T cells (Tregs) and the PD-1: PD-ligand (PD-L) pathway are both critical to terminating immune responses. Elimination of either can result in the breakdown of tolerance and the development of autoimmunity. The PD-1: PD-L pathway can thwart self-reactive T cells and protect against autoimmunity in many ways. In this review, we highlight how PD-1 and its ligands defend against potentially pathogenic self-reactive effector T cells by simultaneously harnessing two mechanisms of peripheral tolerance: (i) the promotion of Treg development and function and (ii) the direct inhibition of potentially pathogenic self-reactive T cells that have escaped into the periphery. Treg cells induced by the PD-1 pathway may also assist in maintaining immune homeostasis, keeping the threshold for T-cell activation high enough to safeguard against autoimmunity. PD-L1 expression on non-hematopoietic cells as well as hematopoietic cells endows PD-L1 with the capacity to promote Treg development and enhance Treg function in lymphoid organs and tissues that are targets of autoimmune attack. At sites where transforming growth factor-beta is present (e.g. sites of immune privilege or inflammation), PD-L1 may promote the de novo generation of Tregs. When considering the consequences of uncontrolled immunity, it would be therapeutically advantageous to manipulate Treg development and sustain Treg function. Thus, this review also discusses how the PD-1 pathway regulates a number of autoimmune diseases and the therapeutic potential of PD-1: PD-L modulation.

1,823 citations

Journal ArticleDOI
TL;DR: This review summarizes the history of the purification of human IFNs and the key aspects of the current state of knowledge of humanIFN genes, proteins, and receptors and provides some new insights into the development of these proteins as major elements of innate immunity.
Abstract: Summary: Recombinant interferon-α (IFN-α) was approved by regulatory agencies in many countries in 1986. As the first biotherapeutic approved, IFN-α paved the way for the development of many other cytokines and growth factors. Nevertheless, understanding the functions of the multitude of human IFNs and IFN-like cytokines has just touched the surface. This review summarizes the history of the purification of human IFNs and the key aspects of our current state of knowledge of human IFN genes, proteins, and receptors. All the known IFNs and IFN-like cytokines are described [IFN-α, IFN-β, IFN-e, IFN-κ, IFN-ω, IFN-δ, IFN-τ, IFN-γ, limitin, interleukin-28A (IL-28A), IL-28B, and IL-29] as well as their receptors and signal transduction pathways. The biological activities and clinical applications of the proteins are discussed. An extensive section on the evolution of these molecules provides some new insights into the development of these proteins as major elements of innate immunity. The overall structure of the IFNs is put into perspective in relation to their receptors and functions.

1,613 citations

Journal ArticleDOI
TL;DR: There is accumulating evidence that T‐cell‐mediated dominant control of self‐reactive T‐cells contributes to the maintenance of immunologic self‐tolerance and its alteration can cause autoimmune disease.
Abstract: There is accumulating evidence that T-cell-mediated dominant control of self-reactive T-cells contributes to the maintenance of immunologic self-tolerance and its alteration can cause autoimmune disease. Efforts to delineate such a regulatory T-cell population have revealed that CD25+ cells in the CD4+ population in normal naive animals bear the ability to prevent autoimmune disease in vivo and, upon antigenic stimulation, suppress the activation/proliferation of other T cells in vitro. The CD25+ CD4+ regulatory T cells, which are naturally anergic and suppressive, appear to be produced by the normal thymus as a functionally distinct subpopulation of T cells. They play critical roles not only in preventing autoimmunity but also in controlling tumor immunity and transplantation tolerance.

1,600 citations

Journal ArticleDOI
TL;DR: A major innate defense system in invertebrates is the melanization of pathogens and damaged tissues, which is controlled by the enzyme phenoloxidase that in turn is regulated in a highly elaborate manner for avoiding unnecessary production of highly toxic and reactive compounds.
Abstract: Summary: A major innate defense system in invertebrates is the melanization of pathogens and damaged tissues. This important process is controlled by the enzyme phenoloxidase (PO) that in turn is regulated in a highly elaborate manner for avoiding unnecessary production of highly toxic and reactive compounds. Recent progress, especially in arthropods, in the elucidation of mechanisms controlling the activation of zymogenic proPO into active PO by a cascade of serine proteinases and other factors is reviewed. The proPO-activating system (proPO system) is triggered by the presence of minute amounts of compounds of microbial origins, such as β-1,3-glucans, lipopolysaccharides, and peptidoglycans, which ensures that the system will become active in the presence of potential pathogens. The presence of specific proteinase inhibitors prevents superfluous activation. Concomitant with proPO activation, many other immune reactions will be produced, such as the generation of factors with anti-microbial, cytotoxic, opsonic, or encapsulation-promoting activities.

1,578 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202360
2022126
202198
202095
201988
201894