scispace - formally typeset
Search or ask a question
JournalISSN: 1567-1348

Infection, Genetics and Evolution 

Elsevier BV
About: Infection, Genetics and Evolution is an academic journal published by Elsevier BV. The journal publishes majorly in the area(s): Population & Genotype. It has an ISSN identifier of 1567-1348. It is also open access. Over the lifetime, 5135 publications have been published receiving 127055 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is concluded that greater advances in knowledge on pathogenic and epidemiological features of these parasites are expected in the coming decade through the comparative analysis of the genomes from isolates of various DTUs.
Abstract: The protozoan Trypanosoma cruzi, its mammalian reservoirs, and vectors have existed in nature for millions of years. The human infection, named Chagas disease, is a major public health problem for Latin America. T. cruzi is genetically highly diverse and the understanding of the population structure of this parasite is critical because of the links to transmission cycles and disease. At present, T. cruzi is partitioned into six discrete typing units (DTUs), TcI-TcVI. Here we focus on the current status of taxonomy-related areas such as population structure, phylogeographical and eco-epidemiological features, and the correlation of DTU with natural and experimental infection. We also summarize methods for DTU genotyping, available for widespread use in endemic areas. For the immediate future multilocus sequence typing is likely to be the gold standard for population studies. We conclude that greater advances in our knowledge on pathogenic and epidemiological features of these parasites are expected in the coming decade through the comparative analysis of the genomes from isolates of various DTUs.

736 citations

Journal ArticleDOI
TL;DR: The results are in line with previous estimates and point to all sequences sharing a common ancestor towards the end of 2019, supporting this as the period when SARS-CoV-2 jumped into its human host.
Abstract: SARS-CoV-2 is a SARS-like coronavirus of likely zoonotic origin first identified in December 2019 in Wuhan, the capital of China's Hubei province. The virus has since spread globally, resulting in the currently ongoing COVID-19 pandemic. The first whole genome sequence was published on January 5 2020, and thousands of genomes have been sequenced since this date. This resource allows unprecedented insights into the past demography of SARS-CoV-2 but also monitoring of how the virus is adapting to its novel human host, providing information to direct drug and vaccine design. We curated a dataset of 7666 public genome assemblies and analysed the emergence of genomic diversity over time. Our results are in line with previous estimates and point to all sequences sharing a common ancestor towards the end of 2019, supporting this as the period when SARS-CoV-2 jumped into its human host. Due to extensive transmission, the genetic diversity of the virus in several countries recapitulates a large fraction of its worldwide genetic diversity. We identify regions of the SARS-CoV-2 genome that have remained largely invariant to date, and others that have already accumulated diversity. By focusing on mutations which have emerged independently multiple times (homoplasies), we identify 198 filtered recurrent mutations in the SARS-CoV-2 genome. Nearly 80% of the recurrent mutations produced non-synonymous changes at the protein level, suggesting possible ongoing adaptation of SARS-CoV-2. Three sites in Orf1ab in the regions encoding Nsp6, Nsp11, Nsp13, and one in the Spike protein are characterised by a particularly large number of recurrent mutations (>15 events) which may signpost convergent evolution and are of particular interest in the context of adaptation of SARS-CoV-2 to the human host. We additionally provide an interactive user-friendly web-application to query the alignment of the 7666 SARS-CoV-2 genomes.

709 citations

Journal ArticleDOI
TL;DR: The latest observations about the structure of SCCmec are described, the techniques used to study the molecular epidemiology and evolution of S. aureus as well as some challenges that researchers face in the future are described.
Abstract: A broad variety of infections, ranging from minor infections of the skin to post-operative wound infections can be caused by Staphylococcus aureus. The adaptive power of S. aureus to antibiotics leaded, in the early 1960s, to the emergence of methicillin-resistant S. aureus (MRSA). The cause of resistance to methicillin and all other beta-lactam antibiotics is the mecA gene, which is situated on a mobile genetic element, the staphylococcal cassette chromosome mec (SCCmec). Seven major variants of SCCmec, type I to VII, are distinguished. The most important techniques used to investigate the molecular epidemiology of S. aureus are pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), S. aureus protein A (spa) typing and SCCmec typing (only for MRSA). These techniques have been used to study the evolution of the MRSA clones that have emerged since the early 1960s, and to study their subsequent worldwide dissemination. The early MRSA clones were hospital-associated (HA-MRSA). However, from the late 1990s, community-associated MRSA (CA-MRSA) clones emerged worldwide. CA-MRSA harbors SCCmec type IV, V or VII, the majority belong to other S. aureus lineages compared to HA-MRSA, and CA-MRSA is often associated with the presence of the toxin Panton-Valentine leukocidin (PVL). However, during recent years, the distinction between HA-MRSA and CA-MRSA has started to disappear, and CA-MRSA is now endemic in many US hospitals. MRSA probably originated trough the transfer of SCCmec into a limited number of methicillin-sensitive S. aureus (MSSA) lineages. This review describes the latest observations about the structure of SCCmec, the techniques used to study the molecular epidemiology and evolution of S. aureus as well as some challenges that researchers face in the future.

661 citations

Journal ArticleDOI
TL;DR: Evidence is shown that the novel coronavirus (2019-nCov) is not-mosaic consisting in almost half of its genome of a distinct lineage within the betacoronavirus, suggesting that the hypothesis that 2019-nCoV has originated from bats is very likely.
Abstract: Background A novel coronavirus (2019-nCoV) associated with human to human transmission and severe human infection has been recently reported from the city of Wuhan in China. Our objectives were to characterize the genetic relationships of the 2019-nCoV and to search for putative recombination within the subgenus of sarbecovirus. Methods Putative recombination was investigated by RDP4 and Simplot v3.5.1 and discordant phylogenetic clustering in individual genomic fragments was confirmed by phylogenetic analysis using maximum likelihood and Bayesian methods. Results Our analysis suggests that the 2019-nCoV although closely related to BatCoV RaTG13 sequence throughout the genome (sequence similarity 96.3%), shows discordant clustering with the Bat_SARS-like coronavirus sequences. Specifically, in the 5′-part spanning the first 11,498 nucleotides and the last 3′-part spanning 24,341–30,696 positions, 2019-nCoV and RaTG13 formed a single cluster with Bat_SARS-like coronavirus sequences, whereas in the middle region spanning the 3′-end of ORF1a, the ORF1b and almost half of the spike regions, 2019-nCoV and RaTG13 grouped in a separate distant lineage within the sarbecovirus branch. Conclusions The levels of genetic similarity between the 2019-nCoV and RaTG13 suggest that the latter does not provide the exact variant that caused the outbreak in humans, but the hypothesis that 2019-nCoV has originated from bats is very likely. We show evidence that the novel coronavirus (2019-nCov) is not-mosaic consisting in almost half of its genome of a distinct lineage within the betacoronavirus. These genomic features and their potential association with virus characteristics and virulence in humans need further attention.

579 citations

Journal ArticleDOI
TL;DR: Comparison of gene sequence data reveals that dengue virus has a relatively recent evolutionary history, with the four serotypes originating approximately 1000 years ago and only establishing endemic transmission in humans in the last few hundred years.
Abstract: Dengue is one of the most important emerging viruses, posing a threat to one-third of the global human population. Herein we show how the comparative analysis of gene sequence data has shed light on the origin and spread of dengue virus, as well as on the evolutionary processes that structure its genetic diversity. This reveals that dengue virus has a relatively recent evolutionary history, with the four serotypes originating approximately 1000 years ago and only establishing endemic transmission in humans in the last few hundred years. However, its place of origin remains uncertain as does the extent of genetic and phenotypic diversity present in the sylvatic (primate) transmission cycle. Although there is some evidence that viral strains differ in key phenotypic features such as virulence, and for positive selection at immunologically important sites, it seems likely that stochastic processes also play a major role in shaping viral genetic diversity, with lineage extinction a common occurrence. A more complete understanding of the evolution and epidemiology of dengue virus, particularly with respect to the aetiology of severe disease, will require large-scale prospective studies and the comparative analysis of complete genome sequences.

558 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202385
2022236
2021430
2020470
2019360
2018349