scispace - formally typeset
Search or ask a question
JournalISSN: 1023-3830

Inflammation Research 

Springer Science+Business Media
About: Inflammation Research is an academic journal published by Springer Science+Business Media. The journal publishes majorly in the area(s): Histamine & Mast cell. It has an ISSN identifier of 1023-3830. Over the lifetime, 7917 publications have been published receiving 156327 citations. The journal is also known as: IR & IR :.


Papers
More filters
Journal ArticleDOI
TL;DR: Experimental evidence suggests that cyclosporin A affects an early stage of mitogenic triggering of the immunocompetent lymphoid cell, which contrasts with other immunosuppressives and cytostatic drugs in its weak myelotoxicity.
Abstract: The fungus metabolite cyclosporin A is a small peptide acting as a novel antilymphocytic agent. It strongly depressed appearance of both direct and indirect plaque-forming cells and produced a clear dose-dependent inhibition of haemagglutinin formation in mice upon oral administration. Skin graft rejection in mice and graft-versus-host disease in mice and rats were considerably delayed by cyclosporin A which also prevented the occurrence of paralysis in rats with experimental allergic encephalomyelitis. This compound was not only highly effective in preventing development of Freund's adjuvant arthritis, but in addition improved the symptoms in rats with established arthritis, although it is inactive in acute inflammation. This new agent contrasts with other immunosuppressives and cytostatic drugs in its weak myelotoxicity. Experimental evidence suggests that cyclosporin A, rather than being cytostatic or lympholytic, affects an early stage of mitogenic triggering of the immunocompetent lymphoid cell.

1,341 citations

Journal ArticleDOI
TL;DR: Findings indicate a modulatory role for PPARs in the control of the inflammatory response with potential therapeutic applications in inflammation-related diseases, such as atherosclerosis and inflammatory bowel disease.
Abstract: Peroxisome proliferator-activated (PPARs) are ligand-activated transcription factors belonging to the nuclear receptor family. PPARs function as regulators of lipid and lipoprotein metabolism and glucose homeostasis and influence cellular proliferation, differentiation and apoptosis. PPARalpha is highly expressed in tissues such as liver, muscle, kidney and heart, where it stimulates the beta-oxidative degradation of fatty acids. PPARgamma is predominantly expressed in intestine and adipose tissue. PPARgamma triggers adipocyte differentiation and promotes lipid storage. The hypolipidemic fibrates and the antidiabetic glitazones are synthetic ligands for PPARalpha and PPARgamma, respectively. Furthermore, fatty acids and eicosanoids are natural PPAR ligands: PPARalpha is activated by leukotriene B4, whereas prostaglandin J2 is a PPARgamma ligand. These observations suggested a potential role for PPARs not only in metabolic but also in inflammation control. The first evidence for a role of PPARalpha in inflammation control came from the demonstration that PPARalpha deficient mice display a prolonged response to inflammatory stimuli. It was suggested that PPARalpha deficiency results in a reduced beta-oxidative degradation of these inflammatory fatty acid derivatives. More recently, PPAR activators were shown to inhibit the activation of inflammatory response genes (such as IL-2, IL-6, IL-8, TNFalpha and metalloproteases) by negatively interfering with the NF- kappaB, STAT and AP-1 signalling pathways. PPAR activators exert these anti-inflammatory activities in different immunological and vascular wall cell types such as monocyte/macrophages, endothelial, epithelial and smooth muscle cells in which PPARs are expressed. These recent findings indicate a modulatory role for PPARs in the control of the inflammatory response with potential therapeutic applications in inflammation-related diseases, such as atherosclerosis and inflammatory bowel disease.

895 citations

Journal ArticleDOI
TL;DR: This review summarizes the known mechanisms involved in the anti-inflammatory activity of flavonoids and the implications of these effects on the protection against cancer and cardiovascular disease.
Abstract: Chronic inflammation is being shown to be increasingly involved in the onset and development of several pathological disturbances such as arteriosclerosis, obesity, diabetes, neurodegenerative diseases and even cancer. Treatment for chronic inflammatory disorders has not been solved, and there is an urgent need to find new and safe anti-inflammatory compounds. Flavonoids belong to a group of natural substances occurring normally in the diet that exhibit a variety of beneficial effects on health. The anti-inflammatory properties of flavonoids have been studied recently, in order to establish and characterize their potential utility as therapeutic agents in the treatment of inflammatory diseases. Several mechanisms of action have been proposed to explain in vivo flavonoid anti-inflammatory actions, such as antioxidant activity, inhibition of eicosanoid generating enzymes or the modulation of the production of proinflammatory molecules. Recent studies have also shown that some flavonoids are modulators of proinflammatory gene expression, thus leading to the attenuation of the inflammatory response. However, much work remains to be done in order to achieve definitive conclusions about their potential usefulness. This review summarizes the known mechanisms involved in the anti-inflammatory activity of flavonoids and the implications of these effects on the protection against cancer and cardiovascular disease.

889 citations

Journal ArticleDOI
TL;DR: The constitutive cyclooxygenase-1 (COX-1) can thus be considered a “housekeeping” enzyme, in contrast to cyclo oxygenogenase-2 ( COX-2) which is activated by tissue damage.
Abstract: The discovery of a second cyclooxygenase has provided fresh impetus to the search for new anti-inflammatory drugs. The second enzyme is effectively absent from healthy tissues but its levels rise dramatically during inflammation. It can be induced in migratory cells by bacterial lipopolysaccharide, cytokines and growth factors. The constitutive cyclooxygenase-1 (COX-1) can thus be considered a "housekeeping" enzyme, in contrast to cyclooxygenase-2 (COX-2) which is activated by tissue damage. Both enzymes have a molecular weight of around 70 kDa and similar Km and Vmax values for their reaction with arachidonic acid. Several non steroid anti-inflammatory drugs which have more than 1,000 fold selectivity for COX-2 over COX-1 are in the early stages of drug development.

796 citations

Journal ArticleDOI
TL;DR: Selective COX-2 inhibitors may demonstrate new important therapeutic benefits as anticancer agents, as well as in preventing premature labor and perhaps even retarding the progression of Alzheimer's disease.
Abstract: Nonsteroidal anti-inflammatory drugs (NSAIDs) produce their therapeutic activities through inhibition of cyclooxygenase (COX), the enzyme that makes prostaglandins (PGs). They share, to a greater or lesser degree, the same side effects, including gastric and renal toxicity. Recent research has shown that there are at least two COX isoenzymes. COX-1 is constitutive and makes PGs that protect the stomach and kidney from damage. COX-2 is induced by inflammatory stimuli, such as cytokines, and produces PGs that contribute to the pain and swelling of inflammation. Thus, selective COX-2 inhibitors should be anti-inflammatory without side effects on the kidney and stomach. Of course, selective COX-2 inhibitors may have other side effects and perhaps other therapeutic potential. For instance, COX-2 (and not COX-1) is thought to be involved in ovulation and in labor. In addition, the well-known protective action of aspirin on colon cancer may be through an action on COX-2, which is expressed in this disease. Moreover, NSAIDs delay the progress of Alzheimer's disease. Thus, selective COX-2 inhibitors may demonstrate new important therapeutic benefits as anticancer agents, as well as in preventing premature labor and perhaps even retarding the progression of Alzheimer's disease.

652 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202386
2022155
2021115
2020113
201998
201895