scispace - formally typeset
Search or ask a question

Showing papers in "Intelligent Control and Automation in 2015"


Journal ArticleDOI
TL;DR: A neural-network approximation and the Lyapunov-Krasovskii functional theory into the sliding-mode technique is used and a neural- Network based sliding mode control scheme is proposed, which guarantees the system state trajectory to the designed sliding surface.
Abstract: This paper presents a robust sliding mode controller for a class of unknown nonlinear discrete-time systems in the presence of fixed time delay. A neural-network approximation and the Lyapunov-Krasovskii functional theory into the sliding-mode technique is used and a neural-network based sliding mode control scheme is proposed. Because of the novality of Chebyshev Neural Networks (CNNs), that it requires much less computation time as compare to multi layer neural network (MLNN), is preferred to approximate the unknown system functions. By means of linear matrix inequalities, a sufficient condition is derived to ensure the asymptotic stability such that the sliding mode dynamics is restricted to the defined sliding surface. The proposed sliding mode control technique guarantees the system state trajectory to the designed sliding surface. Finally, simulation results illustrate the main characteristics and performance of the proposed approach.

35 citations


Journal ArticleDOI
TL;DR: This paper presents a humanoid robotic arms controlled by tracking the human skeleton movement in real-time using Kinect upper limbbody tracking and provides a way to send movement task to the humanoid robotic manipulator instead of sending the end position motion like gesture-based approaches.
Abstract: This paper presents a humanoid robotic arms controlled by tracking the human skeleton movement in real-time using Kinect upper limbbody tracking. Using Kinect tracking algorithm, the positions of upper limb arms of the body to the wrist in 3D space can be estimated by processing depth images from the Kinect. An extraction of 3D co-ordinates of the user’s both arm in real-time then Arduino microcontroller is transferring the data between both of computer and the humanoid robotic arm. This method provides a way to send movement task to the humanoid robotic manipulator instead of sending the end position motion like gesture-based approaches and this method has been tested in detect, tracking and following the movement of human skeleton gesture. Designing complete prototype of a humanoid robotic arms with 4DOF three joints in shoulder and one elbow joint to the wrist that look like the Human arm Structure, Appearance and Action that represent human arm movement performed by the humanoid robotic arm. The error was and response time result generated is small (less than 4.6% and 105 ms).

16 citations


Journal ArticleDOI
TL;DR: Two heuristics, a simulated annealing (SA) and a genetic algorithm (GA) have been proposed by using the best performing dispatching rule as the initial solution for SA, and the three superior dispatching rules as part of the initial population for GA.
Abstract: The m-machine no-wait flowshop scheduling problem is addressed where setup times are treated as separate from processing times. The objective is to minimize total tardiness. Different dispatching rules have been investigated and three were found to be superior. Two heuristics, a simulated annealing (SA) and a genetic algorithm (GA), have been proposed by using the best performing dispatching rule as the initial solution for SA, and the three superior dispatching rules as part of the initial population for GA. Moreover, improved versions of SA and GA are proposed using an insertion algorithm. Extensive computational experiments reveal that the improved versions of SA and GA perform about 95% better than SA and GA. The improved version of GA outperforms the improved version of SA by about 3.5%.

13 citations


Journal ArticleDOI
TL;DR: In this article, the authors focus on the estimation of time delays caused by adversaries in the sensing loop (SL) and introduce a simple method for preventing time delay switch attack on networked control systems.
Abstract: In this paper, we focus on the estimation of time delays caused by adversaries in the sensing loop (SL). Based on the literature review, time delay switch (TDS) attacks could make any control system, in particular a power control system, unstable. Therefore, future smart grids will have to use advanced methods to provide better situational awareness of power grid states keeping smart grids reliable and safe from TDS attacks. Here, we introduce a simple method for preventing time delay switch attack on networked control systems. The method relies on an estimator that will estimate and track time delays introduced by an adversary. Knowing the maximum tolerable time delay of the plant’s optimal controller for which the plant remains stable, a time-delay detector issues an alarm signal when the estimated time delay is larger than the minimum one and directs the system to alarm state. In an alarm state, the plant operates under the control of an emergency controller that is local to the plant and remains in this mode until the networked control system state is restored. This method is an inexpensive and simple way to guarantee that an industrial control system remains stable and secure.

12 citations


Journal ArticleDOI
TL;DR: In this paper, the authors proposed an approach for developing flexible and interoperable SCADA systems based on the integration of MAS and OPC process protocol, which has the following advantages: 1) simple (easier to be implemented); 2) flexible (able to adapt to its environment dynamic changes); and 3) interoperable (relative to the underlying control systems, which belongs to diverse of vendors).
Abstract: SCADA (Supervisory Control and Data Acquisition) is concerned with gathering process information from industrial control processes found in utilities such as power grids, water networks, transportation, manufacturing, etc., to provide the human operators with the required real-time access to industrial processes to be monitored and controlled either locally (on-site)or remotely (i.e., through Internet). Conventional solutions such as custom SCADA packages, custom communication protocols, and centralized architectures are no longer appropriate for engineering this type of systems because of their highly distribution and their uncertain continuously changing working environments. Multi-agent systems (MAS) appeared as a new architectural style for engineering complex and highly dynamic applications such as SCADA systems. In this paper, we propose an approach for simply developing flexible and interoperable SCADA systems based on the integration of MAS and OPC process protocol. The proposed SCADA system has the following advantages: 1) simple (easier to be implemented); 2) flexible (able to adapt to its environment dynamic changes); and 3) interoperable (relative to the underlying control systems, which belongs to diverse of vendors). The applicability of the proposed approach is demonstrated by a real case study example carried out in a paper mill.

8 citations


Journal ArticleDOI
TL;DR: In this article, a 4-DOF robotic arm with one prismatic joint and three revolute joints (PRRR) was controlled by using a SPMF algorithm, and the results showed that SPMFs are a strong candidate for nonlinear industrial applications.
Abstract: Sigma-Point Kalman Filters (SPKFs) are popular estimation techniques for high nonlinear system applications. The benefits of using SPKFs include (but not limited to) the following: the easiness of linearizing the nonlinear matrices statistically without the need to use the Jacobian matrices, the ability to handle more uncertainties than the Extended Kalman Filter (EKF), the ability to handle different types of noise, having less computational time than the Particle Filter (PF) and most of the adaptive techniques which makes it suitable for online applications, and having acceptable performance compared to other nonlinear estimation techniques. Therefore, SPKFs are a strong candidate for nonlinear industrial applications, i.e. robotic arm. Controlling a robotic arm is hard and challenging due to the system nature, which includes sinusoidal functions, and the dependency on the sensors’ number, quality, accuracy and functionality. SPKFs provide with a mechanism that reduces the latter issue in terms of numbers of required sensors and their sensitivity. Moreover, they could handle the nonlinearity for a certain degree. This could be used to improve the controller quality while reducing the cost. In this paper, some SPKF algorithms are applied to 4-DOF robotic arm that consists of one prismatic joint and three revolute joints (PRRR). Those include the Unscented Kalman Filter (UKF), the Cubature Kalman Filter (CKF), and the Central Differences Kalman Filter (CDKF). This study gives a study of those filters and their responses, stability, robustness, computational time, complexity and convergences in order to obtain the suitable filter for an experimental setup.

7 citations


Journal ArticleDOI
TL;DR: The proposed research has interpreted the outcomes that ANFIS controller is better than Fuzzy controller because it produces less percentage overshoot and causes less distortion of the output signal as the overshoot percentage of ANFis controller is 8.2% while that of FuzzY controller is 14.4%.
Abstract: Machines have served the humanity starting from a simple ceiling fan to higher industrial applications such as lathe drives and conveyor belts. This research work aims at providing an appropriate software based control system because it provides computer featured applications, prevents rapid signal loss, reduces noise while also significantly improves the steady state and dynamic response of the motor. In this research paper, we have worked on DC motors due to its significant advantages over other types of machine drives. We have first individually studied Fuzzy and ANFIS (Adaptive Neuro-Fuzzy Interference System) controller in controlling speed for a separately excited DC motor. Afterwards, we have analyzed both results to conclude that which technique is better to be adopted for precisely controlling the speed of DC motor. Outcomes from MATLAB fuzzy logic toolbox for simulation of our schematic has been provided in this research work. Our study parameters include input voltage of DC motor, its speed, percentage overshoot and rising time of the output signal. Our proposed research has interpreted the outcomes that ANFIS controller is better than Fuzzy controller because it produces less percentage overshoot and causes less distortion of the output signal as the overshoot percentage of ANFIS controller is 8.2% while that of Fuzzy controller is 14.4%.

6 citations


Journal ArticleDOI
TL;DR: A motion planning gap-based algorithms for mobile robots in an unknown environment for exploration purposes, designed to use minimal sensory data instead of costly ones, which is cost effective and attractive to use in some applications such as search and rescue in hazardous environments.
Abstract: We propose a motion planning gap-based algorithms for mobile robots in an unknown environment for exploration purposes. The results are locally optimal and sufficient to navigate and explore the environment. In contrast with the traditional roadmap-based algorithms, our proposed algorithm is designed to use minimal sensory data instead of costly ones. Therefore, we adopt a dynamic data structure called Gap Navigation Trees (GNT), which keeps track of the depth discontinuities (gaps) of the local environment. It is incrementally constructed as the robot which navigates the environment. Upon exploring the whole environment, the resulting final data structure exemplifies the roadmap required for further processing. To avoid infinite cycles, we propose to use landmarks. Similar to traditional roadmap techniques, the resulting algorithm can serve key applications such as exploration and target finding. The simulation results endorse this conclusion. However, our solution is cost effective, when compared to traditional roadmap systems, which makes it more attractive to use in some applications such as search and rescue in hazardous environments.

6 citations


Journal ArticleDOI
TL;DR: This paper describes industrial sorting system, which is based on robot vision technology, introduces main image processing methodology used during development, and simulates algorithm with Matlab and sets up image processing algorithm library via C# program.
Abstract: This paper describes industrial sorting system, which is based on robot vision technology, introduces main image processing methodology used during development, and simulates algorithm with Matlab. Besides, we set up image processing algorithm library via C# program and realize recognition and location for regular geometry workpiece. Furthermore, we analyze camera model in vision algorithm library, calibrate the camera, process the image series, and resolve the identify problem for regular geometry workpiece with different colours.

6 citations


Journal ArticleDOI
TL;DR: Aiming to implement metrics that gives predictive information about diagnosability of an Instruction List (IL) PLC programs, this could minimize the needed effort to check the program in case of mistakes.
Abstract: As a result of sudden failure in the Programmable Logic Control (PLC) controlled process, the need of diagnosis arises. Diagnosis problem plays an important role to monitor failures in PLC, used to control the whole process. Nowadays and due to the lack of the needed tools availability to perform this action automatically, it is accomplished manually. Usually, the time consuming method is used by back-tracking the failure on an actuator due to the corresponding sensors. This paper analyzes the software quality metrics and their application on the PLC programs. Aiming to implement metrics that gives predictive information about diagnosability of an Instruction List (IL) PLC programs, this could minimize the needed effort to check the program in case of mistakes. Furthermore, to get a better prediction about diagnosability, new metrics are introduced which are able to give more information about the semantics of a program. But they are not yet fully developed and have to be analyzed.

5 citations


Journal ArticleDOI
TL;DR: In this article, the problem of computer designing, searching and option of elements of manipulator for flexible manufacture module is considered, and a method of logical simulation of the problem, production model of designing procedures of the program interface and intelligence option of a manipulator, its technical parameters are developed.
Abstract: As a result of analysis of the existent methods and tools of computer aided design of the technical systems of many industrial areas, the primary purpose of the article that consists in the decision of different project problems within the framework of one programmatic system with the use of comfortable programmatic interface is certain. Architecture of the program interface for computer designing and option of technical systems of different industrial areas on the basis of stage-bystage automated designing principles with using programmatic and informative supports is worked out. In the article, the problem of computer designing, searching and option of elements of manipulator for flexible manufacture module is considered. As a method of logical simulation of the problem, production model of designing procedures of the program interface and intelligence option of a manipulator, its technical parameters are developed. On the basis of algorithmic scheme of searching, the option of a manipulator from data base is worked out.

Journal ArticleDOI
TL;DR: In this article, the authors used static results from FEMM simulation as flux-linkage, co-energy, static torque to form a dynamic model of a switched reluctance machine used next as a starter-generator of a hybrid vehicle.
Abstract: Because its high efficiency, its simple stator and rotor structures, the low cost and high reliability, speed operation combined with robust and low cost construction, the switched reluctance machines have represented. In recent years, an interesting alternative to other machine types has been chosen for traction applications especially starter-generator. Their rotors do not generate significant heat, resulting in easy cooling. Their unidirectional flux and current may generate lower core losses and require a simple converter design. Moreover, the switched reluctance machines are known for their high reliability and capability of operating in four quadrants for a variable speed drive. Despite those merits, switched reluctance machine has not been extensively used until recently because of its problems of torque ripples and noise. Additionally, researchers have faced many difficulties to build a SRM model because it is inherently multivariable. It has strong coupling and especially a high nonlinearity. In this paper, we deal with many modeling methods. Numerical, analytical and intelligent approaches are studied. The important aim in this research is to use static results from FEMM simulation as flux-linkage, co-energy, static torque to form a dynamic model of a switched reluctance machine used next as a starter-generator of a hybrid vehicle.

Journal ArticleDOI
TL;DR: In this paper, a robust adaptive control scheme for a class of continuous-time linear systems with unknown non-smooth asymmetrical deadzone nonlinearity at the input of the plant is presented.
Abstract: This paper presents a robust adaptive control scheme for a class of continuous-time linear systems with unknown non-smooth asymmetrical deadzone nonlinearity at the input of the plant. The methodology is applied to handle input deadzone as well as unmeasurable disturbances simultaneously in strictly matched systems. The proposed controller robustly cancels any residual distortion caused by the inaccurate deadzone cancellation scheme. The scheme is shown to successfully cancel the deadzone’s deleterious effect as well as eliminate other unmeasurable disturbances within the span of the input. The new controller ensures the global stability of all states and adaptations, and achieves asymptotic tracking. The asymptotic stability of the closed-loop system is proven by Lyapunov arguments, and simulation results confirm the efficacy of the control methodology.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the performance of hierarchical Wireless Networked Control Systems (WNCS) in two modes: passive supervisor and active supervisor and showed that the Markov models for both modes are identical performability models.
Abstract: This paper investigates the performability of hierarchical Wireless Networked Control Systems (WNCS) The WNCS studied can operate in two modes: passive supervisor and active supervisor It is first shown that the Markov models for both modes are identical Performability models are then developed and a case study shows how to use these models to help make design decisions More specifically, it is observed that the performability of a passive supervisor system increases in time while that of an active supervisor system decreases in time

Journal ArticleDOI
TL;DR: In this paper, the stabilization and robustness of a constrained feedback control for bilinear parabolic systems defined on a Hilbert state space was studied and it was shown that stabilizing such a system reduces stabilization only in its projection on a suitable subspace.
Abstract: In this paper, we shall study the stabilization and the robustness of a constrained feedback control for bilinear parabolic systems defined on a Hilbert state space. Then, we shall show that stabilizing such a system reduces stabilization only in its projection on a suitable subspace. For this purpose, a new constrained stabilizing feedback control that allows a polynomial decay estimate of the stabilized state is given. Also, the robustness of the considered control is discussed. An illustrating example and simulations are presented.

Journal ArticleDOI
TL;DR: The new adaptive balancing equipment—fan-shaped adaptive balancing intelligent device is introduced, a design of such control system based on PLC is projects, and the principle of the control system, the execution software and the design flow are determined.
Abstract: Due to the well condition and the un-expected imbalance movement of the pumping unit in use, the energy consumes a lot. The existing balancing equipment cannot adjust and monitor the pumping units in real time. Therefore this paper introduces the new adaptive balancing equipment—fan-shaped adaptive balancing intelligent device, projects a design of such control system based on PLC, and determines the principle of the control system, the execution software and the design flow. Site commissioning effect on Daqing Oilfield shows this fan-shaped adaptive balancing intelligent device can effectively adjust and monitor the pumping unit in real time, the balance even adjusts from 0.787 to 0.901, and integrated energy saving rate is 14.2%. It is approved that this control device is professionally designed, with strong compatibility, and high reliability.

Journal ArticleDOI
TL;DR: Online HIL experimental data are used to apply human motion imitation to a 2-degree of freedom Lego Mind storm NXT robotic arm, and the applied algorithms solve the overlapping input problem, conducting a simultaneous control of both shoulder and elbow joints, and solving the overlap input problem as well.
Abstract: Microsoft Kinect sensor has shown the research community that it's more than just an interactive gaming device, due to its multi-functional abilities and high reliability. In this work, online HIL (Hardware-in-the-Loop) experimental data are used to apply human motion imitation to a 2-degree of freedom Lego Mind storm NXT robotic arm. A model simulation of the dc motor used in this experiment is also present in this paper. The acquired input data from the Kinect sensor are processed in a closed loop PID controller with feedback from motors encoders. The applied algorithms solve the overlapping input problem, conducting a simultaneous control of both shoulder and elbow joints, and solving the overlapping input problem as well. The work in this paper is presented as a prototype to assure the applicability of the algorithms, for further development.

Journal ArticleDOI
TL;DR: In this article, a continuous-time adaptive control scheme for systems with uncertain non-symmetrical deadzone nonlinearity located at the output of a plant is presented, where an adaptive inverse function is developed and used in conjunction with a robust adaptive controller to reduce the effect of non-linearity.
Abstract: This paper presents a continuous-time adaptive control scheme for systems with uncertain non-symmetrical deadzone nonlinearity located at the output of a plant. An adaptive inverse function is developed and used in conjunction with a robust adaptive controller to reduce the effect of deadzone nonlinearity. The deadzone inverse function is also implemented in continuous time, and an adaptive update law is designed to estimate the deadzone parameters. The adaptive output deadzone inverse controller is smoothly differentiable and is combined with a robust adaptive nonlinear controller to ensure robustness and boundedness of all the states of the system as well as the output signal. The mismatch between the ideal deadzone inverse function and our proposed implantation is treated as a disturbance that can be upper bounded by a polynomial in the system states. The overall stability of the closed-loop system is proven by using Lyapunov method, and simulations confirm the efficacy of the control methodology.

Journal ArticleDOI
TL;DR: The result shows that this graphic information extraction method can efficiently identify the graphic information including line, circle, arc etc. in DXF file and the CNC engraving machine can be controlled well.
Abstract: This paper researches the main technology of open CNC engraving machine, the DXF identification technology. Agraphic information extraction method is proposed. By this method, the graphic information in DXF file can be identified and transformed into bottom motion controller’s code. So the engraving machine can achieve trajectory tracking. Then the open CNC engraving machine system is developed with C#. At last, the method is validated on a three axes motion experiment platform. The result shows that this method can efficiently identify the graphic information including line, circle, arc etc. in DXF file and the CNC engraving machine can be controlled well.

Journal ArticleDOI
TL;DR: In this article, an adaptive one-step-ahead control for resistance spot welding (RSW) is proposed, which is based on an electrothermal dynamical model of the RSW process.
Abstract: Resistance Spot Welding (RSW) is a process commonly used for joining a stack of two or three metal sheets at desired spots. The weld is accomplished by holding the metallic workpieces together by applying pressure through the tips of a pair of electrodes and then passing a strong electric current for a short duration. Inconsistent weld and insufficient nugget size are some of the common problems associated with RSW. To overcome these problems, a new adaptive control scheme is proposed in this paper. It is based on an electrothermal dynamical model of the RSW process, and utilizes the principle of adaptive one-step-ahead control. It is basically a tracking controller that adjusts the weld current continuously to make sure that the temperature of the workpieces or the weld nugget tracks a desired reference temperature profile. The proposed control scheme is expected to reduce energy consumption by 5% or more per weld, which can result in significant energy savings for any application requiring a high volume of spot welds. The design steps are discussed in details. Also, results of some simulation studies are presented.

Journal ArticleDOI
TL;DR: In this paper, performance analysis on hybrid AC/DC microgrid networks for residential home cluster is presented, which includes comprehensive types of Distributed Generators (DGs) as hybrid power sources (Wind, Photovoltaic (PV) solar cell, battery, fuel cell).
Abstract: This paper presents performance analysis on hybrid AC/DC microgrid networks for residential home cluster. The design of the proposed microgrid includes comprehensive types of Distributed Generators (DGs) as hybrid power sources (wind, Photovoltaic (PV) solar cell, battery, fuel cell). Details about each DG dynamic modeling are presented and discussed. The customers in home cluster can be connected in both of the operating modes: islanded to the microgrid or connected to utility grid. Each DG has appended control system with its modeling that will be discussed to control DG performance. The wind turbine will be controlled by AC control system within three sub-control systems: 1) speed regulator and pitch control, 2) rotor side converter control, and 3) grid side converter control. The AC control structure is based on PLL, current regulator and voltage booster converter with using of photovoltaic Voltage Source Converter (VSC) and inverters to connect to the grid. The DC control system is mainly based on Maximum Power Point Tracking (MPPT) controller and boost converter connected to the PV array block and in order to control the system. The case study is used to analyze the performance of the proposed microgrid. The buses voltages, active power and reactive power responses are presented in both of grid-connected and islanded modes. In addition, the power factor, Total Harmonic Distortion (THD) and modulation index are calculated.

Journal ArticleDOI
TL;DR: The design and implementation of Mamdani fuzzy controller to generate electric pulses that mimic the natural pacing system of the heart maintains an adequate heart rate by delivering controlled, rhythmic electrical stimuli to the chambers of the patient heart.
Abstract: Cardiovascular disease is defined as a heart rate that is less than 60 bpm. Implantable cardiac devices such as pacemakers are widely used nowadays. In this paper, design and implementation of the heart model can be controlled to be the heart of a patient suffering from a decrease in heart rate (Bradycardia). A system is designed to sense and calculate the heart rate per minute and it is considered as an input to the controller. The design and implementation of Mamdani fuzzy controller to generate electric pulses that mimic the natural pacing system of the heart maintains an adequate heart rate by delivering controlled, rhythmic electrical stimuli to the chambers of the patient heart. The proposed controller is tested by using Matlab/Simulink program.

Journal ArticleDOI
TL;DR: The article depicts a complete example of processing for the proposed CMCU model and discusses the advantages and disadvantages of the approach in question and presents the results of the experiments conducted on a real CPLD system.
Abstract: This article presents a proposal for a model of a microprogram control unit (CMCU) with output identification adapted for implementation in complex programmable logic devices (CPLD) equipped with integrated memory modules [1]. An approach which applies two sources of code and one-hot encoding has been used in a base CMCU model with output identification [2] [3]. The article depicts a complete example of processing for the proposed CMCU model. Furthermore, it also discusses the advantages and disadvantages of the approach in question and presents the results of the experiments conducted on a real CPLD system.

Journal ArticleDOI
TL;DR: The minimum time dynamic optimization problem to LOC is treated using Pontryagin’s Maximum Principle and the resulting two point boundary value problem is solved using stochastic shooting point methods via a differential evolution scheme (DE).
Abstract: Loss of Control (LOC) is the primary factor responsible for the majority of fatal air accidents during past decade. LOC is characterized by the pilot’s inability to control the aircraft and is typically associated with unpredictable behavior, potentially leading to loss of the aircraft and life. In this work, the minimum time dynamic optimization problem to LOC is treated using Pontryagin’s Maximum Principle (PMP). The resulting two point boundary value problem is solved using stochastic shooting point methods via a differential evolution scheme (DE). The minimum time until LOC metric is computed for corresponding spatial control limits. Simulations are performed using a linearized longitudinal aircraft model to illustrate the concept.

Journal ArticleDOI
TL;DR: This paper presents a real-time, dynamic system that uses high resolution gimbals and motorized lenses with position encoders on their zoom and focus elements to “recalibrate” the system as needed to track a target.
Abstract: This paper presents a real-time, dynamic system that uses high resolution gimbals and motorized lenses with position encoders on their zoom and focus elements to “recalibrate” the system as needed to track a target. Systems that initially calibrate for a mapping between pixels of a wide field of view (FOV) master camera and the pan-tilt (PT) settings of a steerable narrow FOV slave camera assume that the target is travelling on a plane. As the target travels through the FOV of the master camera, the slave cameras PT settings are then adjusted to keep the target centered within its FOV. In this paper, we describe a system we have developed that allows both cameras to move and extract the 3D coordinates of the target. This is done with only a single initial calibration between pairs of cameras and high-resolution pan-tilt-zoom (PTZ) platforms. Using the information from the PT settings of the PTZ platform as well as the precalibrated settings from a preset zoom lens, the 3D coordinates of the target are extracted and compared to those of a laser range finder and static-dynamic camera pair accuracies.

Journal ArticleDOI
TL;DR: In this paper, the advantages of Model Reference Adaptive Control (MRAC) motion cueing algorithm against the classical motion cue-ing algorithm in terms of biomechanical reactions of the participants during the critical maneuvers like chicane in driving simulator real-time.
Abstract: The objective of this paper is to present the advantages of Model reference adaptive control (MRAC) motion cueing algorithm against the classical motion cueing algorithm in terms of biomechanical reactions of the participants during the critical maneuvers like chicane in driving simulator real-time. This study proposes a method and an experimental validation to analyze the vestibular and neuromuscular dynamics responses of the drivers with respect to the type of the control used at the hexapod driving simulator. For each situation, the EMG (electromyography) data were registered from arm muscles of the drivers (flexor carpi radialis, brachioradialis). In addition, the roll velocity perception thresholds (RVT) and roll velocities (RV) were computed from the real-time vestibular level measurements from the drivers via a motion-tracking sensor. In order to process the data of the EMG and RVT, Pearson’s correlation and a two-way ANOVA with a significance level of 0.05 were assigned. Moreover, the relationships of arm muscle power and roll velocity with vehicle CG (center of gravity) lateral displacement were analyzed in order to assess the agility/alertness level of the drivers as well as the vehicle loss of control characteristics with a confidence interval of 95%. The results showed that the MRAC algorithm avoided the loss of adhesion, loss of control (LOA, LOC) more reasonably compared to the classical motion cueing algorithm. According to our findings, the LOA avoidance decreased the neuromuscular-visual cues level conflict with MRAC algorithm. It also revealed that the neuromuscular-vehicle dynamics conflict has influence on visuo-vestibular conflict; however, the visuo-vestibular cue conflict does not influence the neuromuscular-vehicle dynamics interactions.