scispace - formally typeset
Search or ask a question
JournalISSN: 0029-5981

International Journal for Numerical Methods in Engineering 

Wiley-Blackwell
About: International Journal for Numerical Methods in Engineering is an academic journal published by Wiley-Blackwell. The journal publishes majorly in the area(s): Finite element method & Mixed finite element method. It has an ISSN identifier of 0029-5981. Over the lifetime, 11070 publications have been published receiving 522319 citations. The journal is also known as: IJNME, & Numerical methods in engineering.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a displacement-based approximation is enriched near a crack by incorporating both discontinuous elds and the near tip asymptotic elds through a partition of unity method.
Abstract: SUMMARY An improvement of a new technique for modelling cracks in the nite element framework is presented. A standard displacement-based approximation is enriched near a crack by incorporating both discontinuous elds and the near tip asymptotic elds through a partition of unity method. A methodology that constructs the enriched approximation from the interaction of the crack geometry with the mesh is developed. This technique allows the entire crack to be represented independently of the mesh, and so remeshing is not necessary to model crack growth. Numerical experiments are provided to demonstrate the utility and robustness of the proposed technique. Copyright ? 1999 John Wiley & Sons, Ltd.

5,815 citations

Journal ArticleDOI
TL;DR: In this article, an element-free Galerkin method which is applicable to arbitrary shapes but requires only nodal data is applied to elasticity and heat conduction problems, where moving least-squares interpolants are used to construct the trial and test functions for the variational principle.
Abstract: An element-free Galerkin method which is applicable to arbitrary shapes but requires only nodal data is applied to elasticity and heat conduction problems. In this method, moving least-squares interpolants are used to construct the trial and test functions for the variational principle (weak form); the dependent variable and its gradient are continuous in the entire domain. In contrast to an earlier formulation by Nayroles and coworkers, certain key differences are introduced in the implementation to increase its accuracy. The numerical examples in this paper show that with these modifications, the method does not exhibit any volumetric locking, the rate of convergence can exceed that of finite elements significantly and a high resolution of localized steep gradients can be achieved. The moving least-squares interpolants and the choices of the weight function are also discussed in this paper.

5,324 citations

Journal ArticleDOI
TL;DR: Gmsh as mentioned in this paper is an open-source 3D finite element grid generator with a build-in CAD engine and post-processor that provides a fast, light and user-friendly meshing tool with parametric input and advanced visualization capabilities.
Abstract: Gmsh is an open-source 3-D finite element grid generator with a build-in CAD engine and post-processor. Its design goal is to provide a fast, light and user-friendly meshing tool with parametric input and advanced visualization capabilities. This paper presents the overall philosophy, the main design choices and some of the original algorithms implemented in Gmsh. Copyright (C) 2009 John Wiley & Sons, Ltd.

5,322 citations

Journal ArticleDOI
TL;DR: In this article, a new method for non-linear programming in general and structural optimization in particular is presented, in which a strictly convex approximating subproblem is generated and solved.
Abstract: A new method for non-linear programming in general and structural optimization in particular is presented. In each step of the iterative process, a strictly convex approximating subproblem is generated and solved. The generation of these subproblems is controlled by so called ‘moving asymptotes’, which may both stabilize and speed up the convergence of the general process.

4,218 citations

Journal ArticleDOI
TL;DR: In this article, a minimal remeshing finite element method for crack growth is presented, where Discontinuous enrichment functions are added to the finite element approximation to account for the presence of the crack.
Abstract: A minimal remeshing finite element method for crack growth is presented. Discontinuous enrichment functions are added to the finite element approximation to account for the presence of the crack. This method allows the crack to be arbitrarily aligned within the mesh. For severely curved cracks, remeshing may be needed but only away from the crack tip where remeshing is much easier. Results are presented for a wide range of two-dimensional crack problems showing excellent accuracy. Copyright © 1999 John Wiley & Sons, Ltd.

4,185 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023113
2022306
2021320
2020257
2019204
2018256