scispace - formally typeset
Search or ask a question
JournalISSN: 0363-907X

International Journal of Energy Research 

Wiley-Blackwell
About: International Journal of Energy Research is an academic journal published by Wiley-Blackwell. The journal publishes majorly in the area(s): Chemistry & Heat transfer. It has an ISSN identifier of 0363-907X. Over the lifetime, 8468 publications have been published receiving 149089 citations. The journal is also known as: Energy research.


Papers
More filters
Journal ArticleDOI
TL;DR: The U.S. Department of Energy and the National Renewable Energy Laboratory are developing technologies to produce hydrogen from renewable, sustainable sources as discussed by the authors, and a cost goal of $2.00-$3.00 kg−1 of hydrogen has been identified as the range at which delivered hydrogen becomes cost competitive with gasoline for passenger vehicles.
Abstract: The U.S. Department of Energy and the National Renewable Energy Laboratory are developing technologies to produce hydrogen from renewable, sustainable sources. A cost goal of $2.00–$3.00 kg−1 of hydrogen has been identified as the range at which delivered hydrogen becomes cost competitive with gasoline for passenger vehicles. Electrolysis of water is a standard commercial technology for producing hydrogen. Using wind and solar resources to produce the electricity for the process creates a renewable system. Biomass-to-hydrogen processes, including gasification, pyrolysis, and fermentation, are less well-developed technologies. These processes offer the possibility of producing hydrogen from energy crops and from biomass materials such as forest residue and municipal sewage. Solar energy can be used to produce hydrogen from water and biomass by several conversion pathways. Concentrated solar energy can generate high temperatures at which thermochemical reactions can be used to split water. Photoelectrochemical water splitting and photobiology are long-term options for producing hydrogen from water using solar energy. All these technologies are in the development stage. Copyright © 2007 John Wiley & Sons, Ltd.

853 citations

Journal ArticleDOI
TL;DR: The commercial development and current economic incentives associated with energy storage using redox flow batteries (RFBs) are summarised in this article, where the analysis is focused on the all-vanadium system, which is the most studied and widely commercialized RFB.
Abstract: The commercial development and current economic incentives associated with energy storage using redox flow batteries (RFBs) are summarised. The analysis is focused on the all-vanadium system, which is the most studied and widely commercialised RFB. The recent expiry of key patents relating to the electrochemistry of this battery has contributed to significant levels of commercialisation in, for example, Austria, China and Thailand, as well as pilot-scale developments in many countries. The potential benefits of increasing battery-based energy storage for electricity grid load levelling and MW-scale wind/solar photovoltaic-based power generation are now being realised at an increasing level. Commercial systems are being applied to distributed systems utilising kW-scale renewable energy flows. Factors limiting the uptake of all-vanadium (and other) redox flow batteries include a comparatively high overall internal costs of $217 kW−1 h−1 and the high cost of stored electricity of ≈ $0.10 kW−1 h−1. There is also a low-level utility scale acceptance of energy storage solutions and a general lack of battery-specific policy-led incentives, even though the environmental impact of RFBs coupled to renewable energy sources is favourable, especially in comparison to natural gas- and diesel-fuelled spinning reserves. Together with the technological and policy aspects associated with flow batteries, recent attempts to model redox flow batteries are considered. The issues that have been addressed using modelling together with the current and future requirements of modelling are outlined. Copyright © 2011 John Wiley & Sons, Ltd.

585 citations

Journal ArticleDOI
TL;DR: MarkAL as mentioned in this paper is a linear programming model of national energy systems that is driven by useful energy demands, optimizes over several time periods collectively, and allows multiobjective analyses to be performed quite easily.
Abstract: As part of a project to assess the value of new energy technologies, an international group of researchers created a linear-programming model of national energy systems. This model, MARKAL, is driven by useful energy demands, optimizes over several time periods collectively, and allows multiobjective analyses to be performed quite easily. We describe here the technical structure of the model, defining the functions determined when satisfying the model's relations and the parameters that must be supplied to give the model content.

564 citations

Journal ArticleDOI
TL;DR: In this paper, a review summarizes the effects that nanotechnology can have on the main properties of metal hydrides and highlights the main competing behaviours between the system requirements, the necessary trade-offs, and the research priorities necessary to obtain hydride storage materials for practical automotive applications.
Abstract: Hydrogen is considered a good energy carrier candidate for future automotive applications that could be part of a carbon-free cycle. Metal hydrides are often preferred over pressurized gas and other hydrogen storage methods because of their gravimetric and volumetric storage capacities and safe operating pressures. In addition to the hydrogen storage capacity, other properties that have often been disregarded must now be addressed before hydrogen storage in metal hydrides becomes feasible. The slow hydriding/dehydriding kinetics, high release temperature, low storage efficiency due to the high enthalpy of formation, and thermal management during the hydriding reaction remain important difficulties in meeting the objectives set by the Department of Energy (DOE) for hydrogen storage systems. Nanotechnology offers new ways of addressing those issues by taking advantage of the distinctive chemical and physical properties observed in nanostructures. Nanostructured materials significantly improve the reaction kinetics, reduce the enthalpy of formation, and lower the hydrogen absorption and release temperatures through destabilization of the metal hydride and multiple catalytic effects in the system. But nanostructures can also lead to poor cyclability, degradation of the sorption properties, and a significant reduction of the thermal conductivity that could make metal hydrides impractical for hydrogen storage. This review summarizes the effects that nanotechnology can have on the main properties of metal hydrides and highlights the main competing behaviours between the system requirements, the necessary trade-offs, and the research priorities necessary to obtain hydride storage materials for practical automotive applications. Copyright © 2007 John Wiley & Sons, Ltd.

558 citations

Journal ArticleDOI
TL;DR: In this article, a simplified bottom-up load model is presented to generate realistic domestic electricity consumption data on an hourly basis from a few up to thousands of households using input data that is available in public reports and statistics.
Abstract: Electricity consumption data profiles that include details on the consumption can be generated with a bottom-up load models. In these models the load is constructed from elementary load components that can be households or even their individual appliances. In this work a simplified bottom-up model is presented. The model can be used to generate realistic domestic electricity consumption data on an hourly basis from a few up to thousands of households. The model uses input data that is available in public reports and statistics. Two measured data sets from block houses are also applied for statistical analysis, model training, and verification. Our analysis shows that the generated load profiles correlate well with real data. Furthermore, three case studies with generated load data demonstrate some opportunities for appliance level demand side management (DSM). With a mild DSM scheme using cold loads, the daily peak loads can be reduced 7.2% in average. With more severe DSM schemes the peak load at the yearly peak day can be completely levelled with 42% peak reduction and sudden 3 h loss of load can be compensated with 61% mean load reduction. Copyright © 2005 John Wiley & Sons, Ltd.

528 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023211
20221,193
20211,685
2020833
2019657
2018368