scispace - formally typeset
Search or ask a question

Showing papers in "International Journal of Environmental Research and Public Health in 2005"


Journal ArticleDOI
TL;DR: There is a need for both increased monitoring data for toxins in drinking water and epidemiological studies on adverse health effects in exposed populations to clarify the extent of the health risk.
Abstract: Cyanobacterial toxins have caused human poisoning in the Americas, Europe and Australia. There is accumulating evidence that they are present in treated drinking water supplies when cyanobacterial blooms occur in source waters. With increased population pressure and depleted groundwater reserves, surface water is becoming more used as a raw water source, both from rivers and lakes/reservoirs. Additional nutrients in water which arise from sewage discharge, agricultural run-off or storm water result in overabundance of cyanobacteria, described as a ‘water bloom’. The majority of cyanobacterial water-blooms are of toxic species, producing a diversity of toxins. The most important toxins presenting a risk to the human population are the neurotoxic alkaloids (anatoxins and paralytic shellfish poisons), the cyclic peptide hepatotoxins (microcystins) and the cytotoxic alkaloids (cylindrospermopsins). At the present time the only cyanobacteral toxin family that have been internationally assessed for health risk by the WHO are the microcystins, which cause acute liver injury and are active tumour promoters. Based on sub-chronic studies in rodents and pigs, a provisional Guideline Level for drinking water of 1μg/L of microcystin-LR has been determined. This has been adopted in legislation in countries in Europe, South America and Australasia. This may be revised in the light of future teratogenicity, reproductive toxicity and carcinogenicity studies. The other cyanobacterial toxin which has been proposed for detailed health risk assessment is cylindrospermopsin, a cytotoxic compound which has marked genotoxicity, probable mutagenicity, and is a potential carcinogen. This toxin has caused human poisoning from drinking water, and occurs in water supplies in the USA, Europe, Asia, Australia and South America. An initial health risk assessment is presented with a proposed drinking water Guideline Level of 1μg/L. There is a need for both increased monitoring data for toxins in drinking water and epidemiological studies on adverse health effects in exposed populations to clarify the extent of the health risk.

326 citations


Journal ArticleDOI
TL;DR: This study reflects the extent of the toxic effects of hexavalent chromium and the metal induced cumulative deleterious effects at various functional levels in the widely consumed freshwater fish, Labeo rohita.
Abstract: An attempt has been made in the present investigation to determine the acute toxicity of hexavalent chromium and its toxicological effects on survival, physiological, hematological and biochemical parameters of the widely consumed Indian major carp, Labeo rohita. Short-term acute toxicity tests were performed adopting renewal bioassay technique (USEPA, 1975) over a period of 96 h, using different concentrations of potassium dichromate to the fish and the 96 h LC[50] value was found to be 111.45 mg/l (Cr(+6) as 39.40 mg/l). ANOVA results showed that the normal respiratory activity of the fish was significantly affected and there is a depression in the metabolic rate at the end of 24, 48, 72 and 96 h exposure. The metal also induced significant decrease (p<0.001) in the hematological parameters of the fish like total erythrocyte count, hemoglobin percent and absolute value Mean cell hemoglobin (MCH) both at the end of 24h and 96 h exposure indicating anemia. Appreciable decline in the biochemical profiles such as total glycogen, total lipids and total protein contents of the fish was also observed. However, the decrease in protein content was significant only at the end of 96 h. This study reflects the extent of the toxic effects of hexavalent chromium and the metal induced cumulative deleterious effects at various functional levels in the widely consumed freshwater fish, Labeo rohita.

290 citations


Journal ArticleDOI
TL;DR: The findings revealed that the locomotor activity of test organism could be considered as a suitable marker to evaluate the affect of toxicant even at LOEC levels.
Abstract: Sub-lethal studies of chlorpyrifos, O,O-diethyl-O-(3,5,6-trichloro-2-pyridyl) phosphorothioate on mosquito fish, Gambusia affinis were carried out in vivo , for 20 days to assess the locomotor behavior in relation to bioaccumulation and interaction with a targeted enzyme, acetylcholinesterase (AChE, EC: 3.1.1.7). Fish exposed to sub-lethal concentration of 60 Ag/L (1/5 of LC 50 ) were under stress, and reduced their locomotor behavior like distance travelled per unit time (m/min) and swimming speed (cm/sec) with respect to the length of exposure. The alteration in locomotor behavior of fish may be due to an accumulation of acetylcholine (ACh), a neurotransmitter at synaptic junctions, due to the inhibition of AChE enzyme activity (40 to 55%) in brain and also bioaccumulation of the toxicant in different parts of fish. The bioaccumulation values indicated that the accumulation of chlorpyrifos was maximum in viscera followed by head and body. The average bio-concentration values are 0.109, 0.009 and 0.004 Ag/g for viscera, head and body with depuration rates of 2.24, 1.69 and 0.39 ng/h respectively. It is evident from the results that the sub-lethal concentration [1/5 of LC

157 citations


Journal ArticleDOI
TL;DR: A number of novel epidemiological and etiological avenues for asthma triggers and related respiratory or other environmental health effects are suggested, especially since indoor number concentrations for multiwall carbon nanotube aggregates is at least 10 times the outdoor concentration, and virtually all gas combustion processes are variously effective sources.
Abstract: Nanotechnology and nanomaterials have become the new frontier world-wide over the past few years and prospects for the production and novel uses of large quantities of carbon nanotubes in particular are becoming an increasing reality. Correspondingly, the potential health risks for these and other nanoparticulate materials have been of considerable concern. Toxicological studies, while sparse, have been concerned with virtually uncharacterized, single wall carbon nanotubes, and the conclusions have been conflicting and uncertain. In this research we performed viability assays on a murine lung macrophage cell line to assess the comparative cytotoxicity of commercial, single wall carbon nanotubes (ropes) and two different multiwall carbon nanotube samples; utilizing chrysotile asbestos nanotubes and black carbon nanoaggregates as toxicity standards. These nanotube materials were completely characterized by transmission electron microscopy and observed to be aggregates ranging from 1 to 2 μm in mean diameter, with closed ends. The cytotoxicity data indicated a strong concentration relationship and toxicity for all the carbon nanotube materials relative to the asbestos nanotubes and black carbon. A commercial multiwall carbon nanotube aggregate exhibiting this significant cell response was observed to be identical in structure to multiwall carbon nanotube aggregates demonstrated to be ubiquitous in the environment, and especially in indoor environments, where natural gas or propane cooking stoves exist. Correspondingly, preliminary epidemiological data, although sparse, indicate a correlation between asthma incidence or classification, and exposure to gas stoves. These results suggest a number of novel epidemiological and etiological avenues for asthma triggers and related respiratory or other environmental health effects, especially since indoor number concentrations for multiwall carbon nanotube aggregates is at least 10 times the outdoor concentration, and virtually all gas combustion processes are variously effective sources. These results also raise concerns for manufactured carbon nanotube aggregates, and related fullerene nanoparticles.

129 citations


Journal ArticleDOI
TL;DR: Findings indicate that acetyl cholinesterase is a candidate biomarker for arsenic-induced neurotoxicity in Sprague-Dawley rats.
Abstract: Arsenic is an environmental toxicant, and one of the major mechanisms by which it exerts its toxic effect is through an impairment of cellular respiration by inhibition of various mitochondrial enzymes, and the uncoupling of oxidative phosphorylation. Most toxicity of arsenic results from its ability to interact with sulfhydryl groups of proteins and enzymes, and to substitute phosphorus in a variety of biochemical reactions. Most toxicity of arsenic results from its ability to interact with sulfhydryl groups of proteins and enzymes, and to substitute phosphorus in a variety of biochemical reactions. Recent studies have pointed out that arsenic toxicity is associated with the formation of reactive oxygen species, which may cause severe injury/damage to the nervous system. The main objective of this study was to conduct biochemical analysis to determine the effect of arsenic trioxide on the activity of acetyl cholinesterase; a critical important nervous system enzyme that hydrolyzes the neurotransmitter acetylcholine. Four groups of six male rats each weighing an average 60 + 2 g were used in this study. Arsenic trioxide was intraperitoneally administered to the rats at the doses of 5, 10, 15, 20mg/kg body weight (BW), one dose per 24 hour given for five days. A control group was also made of 6 animals injected with distilled water without chemical. Following anaesthesia, blood specimens were immediately collected using heparinized syringes, and acetyl cholinesterase detection and quantification were performed in serum samples by spectrophotometry. Arsenic trioxide exposure significantly decreased the activity of cholinesterase in the Sprague-Dawley rats. Acetyl cholinesterase activities of 6895 + 822, 5697 + 468, 5069 + 624, 4054 + 980, and 3158 + 648 U/L were recorded for 0, 5, 10, 15, and 20 mg/kg, respectively; indicating a gradual decrease in acetyl cholinesterase activity with increasing doses of arsenic. These findings indicate that acetyl cholinesterase is a candidate biomarker for arsenic-induced neurotoxicity in Sprague-Dawley rats.

95 citations


Journal ArticleDOI
TL;DR: A critical review of MP-related environmental and toxicologic effects is provided, with a special emphasis on their potential implications for public health.
Abstract: Methyl parathion - MP (C8H10NO5PS) is a restricted-use pesticide that has been widely used as an agricultural insecticide. It belongs to the class of organophosphate chemicals characterized by their ability to inhibit acetylcholinesterase activity. The main route of human exposure is inhalation, but dermal contact and inadvertent ingestion can also be substantial. Populations that are susceptible to MP exposure primarily are applicators, manufacturers and individuals living near application and/or disposal sites. Exposure has also been reported as a result of illegal indoor application. MP related health effects include headaches, nausea, night-waking, diarrhea, difficulty breathing, excessive sweating and salivation, incoordination, and mental confusion. Other symptoms including behavior problems, motor skill problems and impairment of memory recall have also been reported. The primary targets of toxicity are the hematopoietic system (serum cholinesterase inhibition), the cardiovascular system (cardiovascular lesions, abnormalities in heart rate and increase in heart-to-body ratio), the reproductive system (placental morphology, fibrosis and hemorrhage, and inhibition of DNA synthesis in seminiferous tubules), and the nervous system (headache, muscle weakness, insomnia, dizziness, and impaired memory). MP is believed to not have any carcinogenic effects. In an attempt to update its toxicologic profile, we hereby provide a critical review of MP-related environmental and toxicologic effects, with a special emphasis on their potential implications for public health.

92 citations


Journal ArticleDOI
TL;DR: This observation is the first to link several carcinogenic agents with the increased retrotransposition activity of L1 as an alternate mechanism of generating genomic instability contributing to the process of carcinogenesis.
Abstract: L1 and Alu elements are among the most active retroposons (mobile elements) in the human genome. Several human diseases, including certain forms of breast cancer and leukemia, are associated with L1 and Alu insertions in functionally important areas of the genome. We present data demonstrating that environmental pollutants, such as heavy metals, can stimulate L1 retrotransposition in a tissue culture system using two different types of assays. The response to these agents was equivalent when using a cell line with a stably integrated L1 vector (genomic) or a by introducing the L1 vector by transient transfection (episomal) of the cell. Reproducible results showed that mercury (HgS), cadmium (CdS), and nickel (NiO) increase the activity of L1 by an average of three (3) fold p<0.001. This observation is the first to link several carcinogenic agents with the increased retrotransposition activity of L1 as an alternate mechanism of generating genomic instability contributing to the process of carcinogenesis. Our results demonstrate that mobile element activation must be considered as one of the mechanisms when evaluating genomic damage/instability in response to environmental agents.

62 citations


Journal ArticleDOI
TL;DR: The task of this work is to create biotests for estimation of Al and other metals toxicity in ground water and to compare these results with physicochemical analysis dates, and to develop plant biotest for estimationof groundwater quality with barley roots, tradescatia and others.
Abstract: Two approaches are distinguished in modern ecological monitoring. The first one is physicochemical analysis of environmental objects with respect to maximum allowable concentrations (MACs) of chemical substances, which is performed by standards methods in accordance with state regulations. The second approach (biological monitoring) is based on the methodology of biotesting and bio indication. The task of this work is to create biotests for estimation of Al and other metals toxicity in ground water and to compare these results with physicochemical analysis dates. Risk assessment for heavy metals contaminated groundwater was also performed. Risk assessment was performed accordingly EPA US recommendation and gave results about 90 per 100000 citizens for Al and 402 per 100000 for mixture of different heavy metals. For comparison: risk for earth background radiation for Middle Russia is (Individual dose 1 millisivert per year) consist 5 per 100000 people. It was shown that groundwater consist HCO3- ions (360 mg/l), sometimes Al compounds 0.21-0.65 mg/l (MAC for Al is 0.5 mg/l for Russia). Other groundwater contain Hg - 0.004 mg/l (MAC - 0.0005 mg/l); Cr - 0.072 mg/l (MAC - 0.05 mg/l); As - less than 0.03 mg/l (MAC - 0.05 mg/l). We developed plant biotest for estimation of groundwater quality with barley roots, tradescatia and others. Some biotests parameters correlate with HCO3-, Cl-, SO(4)2- and metal ions content positively, for another biotest this correlation is strongly negative. The quality of groundwater near Obninsk and in Kaluga Region is very different but hasnit been changed since the year 1998.

62 citations


Journal ArticleDOI
TL;DR: Both cytokines and adhesion molecules were maximally upregulated in the cerebellar sections of the malaria cases, and endothelial activation is a feature of fatal malaria and Salmonella sepsis, with adhesion molecule expression being highly correlated with sequestration.
Abstract: Although the role of systemic proinflammatory cytokines, IL-1β and TNF-α, and their up-regulation of adhesion molecules, ICAM-1, VCAM-1 and E-Selectin, in the pathogenesis of cerebral malaria (CM) is well established, the role of local cytokine release remain unclear. Immunohistochemistry (IHC) was used to compare the expression of ICAM-1, VCAM-1, E-Selectin, IL-1β, TNF-α and TGF- β at light microscopic level in cerebral, cerebellar and brainstem postmortem cryostat sections from 10 CM, 5 severe malarial anemia (SMA), 1 purulent bacterial meningitis (PBM), 2 non-central nervous system infections (NCNSI) and 3 non-infections (NI) deaths in Ghanaian children. Fatal malaria and Salmonella sepsis showed significantly higher vascular expression of all 3 adhesion molecules, with highly significant co-localization with sequestration in the malaria cases. However, there was negligible difference between CM and SMA. TGF-β showed intravascular and perivascular distribution in all cases, but expression was most intense in the PBM case and CM group. TNF-α and IL-1β showed prominent brain parenchymal staining, in addition to intravascular and perivascular staining, in only the PBM case and CM group. The maximal expression of all 6 antigens studied was in the cerebellar sections of the malaria cases. Endothelial activation is a feature of fatal malaria and Salmonella sepsis, with adhesion molecule expression being highly correlated with sequestration. IL-1β and TNF-α are upregulated in only cases with neurodegenerative lesions, whilst TGF-β is present in all cases. Both cytokines and adhesion molecules were maximally upregulated in the cerebellar sections of the malaria cases.

61 citations


Journal ArticleDOI
TL;DR: A study was conducted to determine whether the addition of ethylenediaminetetraacetic acid (EDTA) alone or in combination with acetic acid can further enhance the shoot uptake of Pb and found that translocation index, which is a measure of the partitioning of the metal to the shoots, was significantly enhanced with chelate addition.
Abstract: Phytoextraction is gaining acceptance as a cost-effective and environmentally friendly phytoremediation strategy for reducing toxic metal levels from contaminated soils. Cognizant of the potential of this phytoremediation technique as an alternative to expensive engineering-based remediation technologies, experiments were conducted to evaluate the suitability of some plants as phytoextraction species. From one of our preliminary studies, we found that tall fescue (Festuca arundinacea Schreb. cv. Spirit) can tolerate and accumulate significant amounts of lead (Pb) in its shoots when grown in Pb-amended sand. To further evaluate the suitability of tall fescue as one of the potential crop rotation species for phytoextraction, a study was conducted to determine whether the addition of ethylenediaminetetraacetic acid (EDTA) alone or in combination with acetic acid can further enhance the shoot uptake of Pb. Seeds were planted in 3.8 L plastic pots containing top soil, peat, and sand (4:2:1, v:v:v) spiked with various levels (0,1000, 2000 mg Pb/kg dry soil) of lead. At six weeks after planting, aqueous solutions (0, 5 mmol/kg dry soil) of EDTA and acetic acid (5 mmol/kg dry soil) were applied to the root zone, and all plants were harvested a week later. Results revealed that tall fescue was relatively tolerant to moderate levels of Pb as shown by non-significant differences in root and shoot biomass among treatments. An exception to this trend however, was the slight reduction in root and shoot biomass of plants exposed to the highest Pb level in combination with the two chelates. Root Pb concentration increased with increasing level of soil-applied Pb. Further increases in root Pb concentrations were attributed to chelate amendments. Translocation index, which is a measure of the partitioning of the metal to the shoots, was significantly enhanced with chelate addition especially when both EDTA and acetic acid were used. Chelate-induced increases in translocation indices correspondingly led to higher shoot Pb concentrations.

56 citations


Journal ArticleDOI
TL;DR: Evaluation of the lipid profiles showed while the levels of triacylglycerol were not much different, the patients had significantly lower levels of cholesterol, HDL-cholesterol and LDL-ch cholesterol compared to the unexposed subjects, suggesting significant changes in biochemical parameters in human arsenic toxicity.
Abstract: An estimated 40 million people in Bangladesh have been suffering from arsenic toxicity-related diseases because of drinking water contamination with high levels of naturally occurring arsenic. To evaluate the biochemical changes in chronic arsenic exposure, a total of 115 exposed subjects diagnosed as arsenicosis patients were examined and interviewed, and 120 unexposed volunteers were enrolled in this study. Drinking water, urine and peripheral blood samples were collected from all participants and analyzed. The average levels of arsenic in the drinking water and spot urine samples of the arsenicosis patients were 218.18g/L and 234.68g/L, respectively, and duration of exposure was 7.6 ± 5.2 yrs that ranged from 1-25 yrs. Prevalence of diabetes mellitus among chronic arsenic-exposed subjects was about 2.8 times higher than the unexposed subjects. The activities of alkaline phosphatase were significantly elevated in the patients, 197 U/L compared to 149 U/L in the controls, but alanine transaminase and aspartate transaminase were mostly normal. The patients had significantly lower levels of serum creatinine, 0.97 mg/dL compared to 1.15 mg/dL in the controls; but had significantly elevated levels of total protein, 84 g/L and 77 g/L respectively. The mean level of inorganic phosphate in the serum of arsenicosis patients was 6.4 mg/dL compared to 4.6 mg/dL in the unexposed subjects and the level was significantly higher, indicating substitution of the pentavalent arsenate for the phosphate ion causing underutilization of the latter. Evaluation of the lipid profiles showed while the levels of triacylglycerol were not much different, the patients had significantly lower levels of cholesterol, HDL-cholesterol and LDL-cholesterol compared to the unexposed subjects. These findings suggest significant changes in biochemical parameters in human arsenic toxicity.

Journal ArticleDOI
TL;DR: The update information and experimental results on photostability, photoreactions, and phototoxicity of the natural retinoids including retinol (ROH), retinal, retinoid acid (RA), retinyl acetate, and RP are reported.
Abstract: Sunlight is a known human carcinogen. Many cosmetics contain retinoid-based compounds, such as retinyl palmitate (RP), either to protect the skin or to stimulate skin responses that will correct skin damaged by sunlight. However, little is known about the photodecomposition of some retinoids and the toxicity of these retinoids and their sunlight-induced photodecomposition products on skin. Thus, studies are required to test whether topical application of retinoids enhances the phototoxicity and photocarcinogenicity of sunlight and UV light. Mechanistic studies are needed to provide insight into the disposition of retinoids in vitro and on the skin, and to test thoroughly whether genotoxic damage by UV-induced radicals may participate in any toxicity of topically applied retinoids in the presence of UV light. This paper reports the update information and our experimental results on photostability, photoreactions, and phototoxicity of the natural retinoids including retinol (ROH), retinal, retinoid acid (RA), retinyl acetate, and RP (Figure 1).

Journal ArticleDOI
TL;DR: The purpose of this study was to find soil bacteria capable of degrading high molecular weight PAHs, such as pyrene (Pyr) and benzo[a]pyrene (BaP), which contain more than three benzene rings and so persist in the environment.
Abstract: Polycyclic Aromatic Hydrocarbons (PAHs) are a group of compounds that pose many health threats to human and animal life. They occur in nature as a result of incomplete combustion of organic matter, as well as from many anthropogenic sources including cigarette smoke and automobile exhaust. PAHs have been reported to cause liver damage, red blood cell damage and a variety of cancers. Because of this, methods to reduce the amount of PAHs in the environment are continuously being sought. The purpose of this study was to find soil bacteria capable of degrading high molecular weight PAHs, such as pyrene (Pyr) and benzo[a]pyrene (BaP), which contain more than three benzene rings and so persist in the environment. Bacillus subtilis, identified by fatty acid methyl ester (FAME) analysis, was isolated from PAH contaminated soil. Because it grew in the presence of 33 microg/ml each of pyrene, 1-AP and 1-HP, its biodegradation capabilities were assessed. It was found that after a four-day incubation period at 30 degrees C in 20 microg/ml pyrene or benzo[a]pyrene, B. subtilis was able to transform approximately 40% and 50% pyrene and benzo[a]pyrene, respectively. This is the first report implicating B. subtilis in PAH degradation. Whether or not the intermediates resulting from the transformation are more toxic than their parent compounds, and whether B. subtilis is capable of mineralizing pyrene or benzo[a]pyrene to carbon dioxide and water, remains to be evaluated.

Journal ArticleDOI
TL;DR: In this paper, the degradation of various formulations of the racemic mixture and the enantiomers (including mefenoxam) of metalaxyl in typical soils from Germany and Cameroon in controlled incubation experiments was studied.
Abstract: The degradation of various formulations of the racemic mixture and the enantiomers (including mefenoxam) of metalaxyl in typical soils from Germany and Cameroon in controlled incubation experiments was studied. The kinetics of the degradation or transformation was determined by means of reversed phase HPLC, while the enantiomeric ratios were measured by HPLC with a chiral Whelk O1 column. The dynamics of the quantitative changes in microbiological properties induced by the addition of these fungicides at their recommended field rates were determined in the soils during a 120-day incubation experiment. The degradation followed first-order kinetics (R > or = 0.96). Higher metalaxyl acid metabolite concentrations were found in German than in Cameroonian soils. The enantiomers of the fungicide had different degradation rates in both soils, with half-lives ranging from 17 to 38 days. All forms of metalaxyl had lower degradation rates in the Cameroonian soil than in the German soil. The degradation of the R-enantiomer was much faster than the S-enantiomer in the German soil and slower than the S-enantiomer in the Cameroonian soil, suggesting that different microbial populations, which may be using different enzymes, have different degradation preferences. The type of soil significantly influenced the effect of these fungicides on the soil parameters studied. Incorporation of these fungicides resulted in a change in the ecophysiological status of the soil microbial community as expressed by microbial activities. The activity of phosphatases and fl-glucosidase, the mineralization and availability of N and most plant nutrients in soils were stimulated, whereas the activity of dehydrogenase and the availability of NO3-, were generally adversely affected. The soil NH4+, NO3-, and enzymes activities values in general did not correlate with the degradation of metalaxyl in both soils. However, the degradation of formulated and unformulated metalaxyl was positively correlated to the activity of acid phosphatase in the German soil (R, 0.84 and 0.94 respectively) and in the Cameroonian soil (R, 0.97 and 0.96 respectively).

Journal ArticleDOI
TL;DR: Comparing fresh parent alluvium from the Mississippi River with urban soil metal quantities demonstrates that the soils of New Orleans have undergone a massive accumulation of metals.
Abstract: Soil metal surveys were conducted in Baltimore, MD (1976-1979), Minnesota (1981-1988) and most recently, New Orleans, LA (1989-present). The unique characteristic of New Orleans is that it has two surveys; Survey I was completed in 1992 and Survey II was completed in 2000. This paper seeks to determine if there is a perceptible change in the amount of metals during less than a decade that separated these surveys. The Survey I collection was 4,026 samples stratified by 283 census tracts. All samples were collected in residential neighborhoods at least one block from a busy street. The Survey II collection was 5,467 samples stratified by 286 census tracts (plus City Park). The Survey II collection included busy streets as a category of samples. For comparison, the busy street category of 1,078 samples was excluded from Survey II for a total of 4,388 samples. The extraction methods of the two surveys used the same protocol for strength of acid (1 M HNO3), shaker-time (2 hours), and room temperature (approximately 22 degrees C). However, Survey II differed in amount of sample used in extraction. For Surveys I and II, 4.0g and 0.4g were used respectively. The same ICP-AES was used to measure 8 metals in both surveys. To evaluate the analytical results of the two methods, reference soi 1 samples (n=36) from the Wageningen Evaluating Programs for Analytical Laboratories, International Soil-analytical Exchange (WEPAL; ISE) were used. The relationship between the 4.0 and 0.4 g results were linear and the Survey I results were adjusted for sample:acid ratio. Further evaluation was done by creating interpolated Multiple Metal Accumulation (MMA) maps based on the median MMA for each census tract. A new map was created by dividing Survey II MMA by Survey I MMA. The ratio indicates increases of soil metals in the inner city and decreases of soil metals in the outlying areas of Metropolitan New Orleans. Comparing fresh parent alluvium from the Mississippi River with urban soil metal quantities demonstrates that the soils of New Orleans have undergone a massive accumulation of metals. The preliminary results provide ideas about methods needed to further evaluate the changes between these surveys.

Journal ArticleDOI
TL;DR: The results indicate that the set of DHP-derived DNA adducts found in liver DNA of rats gavaged with retrorsine or riddelliine can serve as biomarkers for the tumorigenicity induced by retronecine-type pyrrolizidine alkaloids.
Abstract: Pyrrolizidine alkaloids are naturally occurring genotoxic chemicals produced by a large number of plants. The high toxicity of many pyrrolizidine alkaloids has caused considerable loss of free-ranging livestock due to liver and pulmonary lesions. Chronic exposure of toxic pyrrolizidine alkaloids to laboratory animals induces cancer. This investigation studies the metabolic activation of retrorsine, a representative naturally occurring tumorigenic pyrrolizidine alkaloid, and shows that a genotoxic mechanism is correlated to the tumorigenicity of retrorsine. Metabolism of retrorsine by liver microsomes of F344 female rats produced two metabolites, 6, 7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP), at a rate of 4.8 ± 0.1 nmol/mg/min, and retrorsine-N-oxide, at a rate of 17.6±0.5 nmol/mg/min. Metabolism was enhanced 1.7-fold by using liver microsomes prepared from dexamethasone-treated rats. DHP formation was inhibited 77% and retrorsine N-oxide formation was inhibited 29% by troleandomycin, a P450 3A enzyme inhibitor. Metabolism of retrorsine with lung, kidney, and spleen microsomes from dexamethasone-treated rats also generated DHP and the N-oxide derivative. When rat liver microsomal metabolism of retrorsine occurred in the presence of calf thymus DNA, a set of DHP-derived DNA adducts was formed; these adducts were detected and quantified by using a previously developed 32P-postlabeling/HPLC method. These same DNA adducts were also found in liver DNA of rats gavaged with retrorsine. Since DHP-derived DNA adducts are suggested to be potential biomarkers of riddelliine-induced tumorigenicity, our results indicate that (i) similar to the metabolic activation of riddelliine, the mechanism of retrorsine-induced carcinogenicity in rats is also through a genotoxic mechanism involving DHP; and (ii) the set of DHP-derived DNA adducts found in liver DNA of rats gavaged with retrorsine or riddelliine can serve as biomarkers for the tumorigenicity induced by retronecine-type pyrrolizidine alkaloids.

Journal ArticleDOI
TL;DR: Toxic responses evaluated at various functional levels are more pronounced in fish exposed to 5.5mg/L and these can serve as potential biomarkers for rapid assessment of acute copper toxicity in environmental biomonitoring.
Abstract: Living in an environment that has been altered considerably by anthropogenic activities, fish are often exposed to a multitude of stressors including heavy metals. Copper ions are quite toxic to fish when concentrations are increased in environmental exposures often resulting in physiological, histological, biochemical and enzymatic alterations in fish, which have a great potential to serve as biomarkers. Esomus danricus was chosen as model in the present study and the metabolic rate, gill morphology, total glycogen, total protein, superoxide dismutase and catalase were critically evaluated. The 96h LC50 value was found to be 5.5mg/L (Cu as 1.402mg/L). Fish groups were separately exposed to lethal (5.5mg/L) and sub lethal concentrations (0.55 mg/L) of copper sulphate over a period of 96h to examine the subtle effects caused at various functional levels. Controls were also maintained simultaneously. Significant decrease in the metabolic rate (p<0.001) of the fish was observed in both the concentrations studied. Studies employing Automated Video Tracking System revealed gross changes in the architecture of gill morphology like loss, fusion, clubbing of secondary gill lamellae, and detachment of gill rakers following softening of gill shaft in fish under lethal exposures indicating reduced respiratory surface area. Biochemical profiles like total glycogen and total protein in gills and muscle of fish exposed to 5.5 mg/L showed appreciable decrease (p<0.05 to 0.001) from control. Significant inhibition of superoxide dismutase (60.83%), catalase (71.57%) from control was observed in fish exposed to 5.5 mg/L at the end of 96h exposure only. Interestingly, in fish exposed to 0.55 mg/L enzyme activity is not affected except for catalase. Toxic responses evaluated at various functional levels are more pronounced in fish exposed to 5.5mg/L and these can serve as potential biomarkers for rapid assessment of acute copper toxicity in environmental biomonitoring.

Journal ArticleDOI
TL;DR: Concept modeling is applied to increase communication, understanding and commitment in the project of seven NGOs “Sustainable Regional Development in the Odra Catchment” and establishes a broad basis for stakeholder-driven discussion that is articulated into goals, objectives, conceptual models, and indicators.
Abstract: The complexity of interactions in socio-ecological systems makes it very difficult to plan and implement policies successfully. Traditional environmental management and assessment techniques produce unsatisfactory results because they often ignore facets of system structure that underlie complexity: delays, feedbacks, and non-linearities. Assuming that causes are linked in a linear chain, they concentrate on technological developments (“hard path”) as the only solutions to environmental problems. Adaptive Management is recognized as a promising alternative approach directly addressing links between social and ecological systems and involving stakeholders in the analysis and decision process. This “soft path” requires special tools to facilitate collaboration between “experts” and stakeholders in analyzing complex situations and prioritizing policies and actions. We have applied conceptual modeling to increase communication, understanding and commitment in the project of seven NGOs “Sustainable Regional Development in the Odra Catchment”. The main goal was to help our NGO partners to facilitate their efforts related to developing sustainable policies and practices to respond to large-scale challenges (EU accession, global changes in climate and economy) to their natural, economic and socio-cultural heritages. Among the variety of sustainability issues explored by these NGOs, two (extensive agricultural practices and “green” local products) were examined by using Adaptive Management (AM) as a framework that would link analysis, discussion, research, actions and monitoring. Within the AM framework the project coordinators used tools of systems analysis (Mental Model Mapping) to facilitate discussions in which NGO professionals and local stakeholders could graphically diagram and study their understanding of what factors interacted and how they affect the region’s sustainability. These discussions produced larger-scale Regional Sustainability Models as well as more detailed sub-models of particular factors, processes, and feedback loops that appear critical to a sustainable future. The Regional Sustainability Model was used to identify a subset of key interacting factors (variables). For each variable, several sustainability indicators were suggested. The growing understanding and acceptance of the AM framework and systems analysis created a momentum both locally and within the region, which makes continued successful use of these indicators quite likely. In contrast to expert-driven projects that inject outside knowledge into a local context, this project established a broad basis for stakeholder-driven discussion that is articulated into goals, objectives, conceptual models, and indicators. The ability to learn and adapt in the AM framework increases the capacity to innovate and find policies and practices that enhance resilience and sustainability in a world in transition.

Journal ArticleDOI
TL;DR: Results of the present study indicate that ozone exposure enhances the toxicity of DEP in human airway epithelial cells by augmenting IL-8 gene expression, a potent chemoattractant of neutrophils in the lung.
Abstract: Ozone, a highly reactive oxidant gas is a major component of photochemical smog. As an inhaled toxicant, ozone induces its adverse effects mainly on the lung. Inhalation of particulate matter has been reported to cause airway inflammation in humans and animals. Furthermore, epidemiological evidence has indicated that exposure to particulate matter (PM 2.5-10 ), including diesel exhaust particles (DEP) has been correlated with increased acute and chronic respiratory morbidity and exacerbation of asthma. Previously, exposure to ozone or particulate matter and their effect on the lung have been addressed as separate environmental problems. Ozone and particulate matter may be chemically coupled in the ambient air. In the present study we determined whether ozone exposure enhances DEP effect on interleukin-8 (IL-8) gene expression in human airway epithelial cells. We report that ozone exposure (0.5 ppm x 1 hr) significantly increased DEP-induced IL-8 gene expression in A549 cells (117 ± 19 pg/ml, n = 6, p < 0.05) as compared to cultures treated with DEP (100 Dg/ml x 4 hr) alone (31 ± 3pg/ml, n = 6), or cultures exposed to purified air (24 ± 6 pg/ml, n = 6). The increased DEP-induced IL-8 gene expression following ozone exposure was attributed to ozone-induced increase in the activity of the transcription factors NF- B and NF-IL6. The results of the present study indicate that ozone exposure enhances the toxicity of DEP in human airway epithelial cells by augmenting IL-8 gene expression, a potent chemoattractant of neutrophils in the lung.

Journal ArticleDOI
TL;DR: Greater survival of FRNA phage compared to E. coli in 50 ppm chlorine treated water suggests that these organisms should be further investigated as indicators of norovirus in depurated shellfish, sanitized produce, and treated wastewater which are all subject to high-level chlorine treatment.
Abstract: We compared the survival of F-specific RNA coliphage MS2, feline calicivirus, and E. coli in normal tap water and in tap water treated to an initial concentration of 50 ppm free chlorine and held at 4°C, 25°C, or 37°C for up to 28 days. Our aim was to determine which of these two organisms (coliphage or E. coli) was better at indicating norovirus survival under the conditions of the experiment. There was a relatively rapid decline of FCV and E. coli in 50 ppm chlorine treated water and both organisms were undetectable within one day irrespective of the temperature. In contrast, FRNA phage survived for 7 to 14 days in 50 ppm chlorine treated water at all temperatures. All organisms survived for 28 days in tap water at 4°C, but FCV was undetectable on day 21 and day 7 at 25°C and 37°C, respectively. Greater survival of FRNA phage compared to E. coli in 50 ppm chlorine treated water suggests that these organisms should be further investigated as indicators of norovirus in depurated shellfish, sanitized produce, and treated wastewater which are all subject to high-level chlorine treatment.

Journal ArticleDOI
TL;DR: Results did not reflect a consistent ethnic trend and highlight the complexity of the risk/protective mechanisms conferred by exposure factors, which could be contributed to by differences in rates of disease progression, influenced by exposure and/or deficiency to trace elements.
Abstract: A stratified random sample of 176 men was taken from a larger community prostate study group of 1405 eligible subjects from three ethnic groups in the Wellington region of New Zealand, in order to examine ethnic differences in exposure to cadmium (Cd), selenium (Se) and zinc (Zn) and possible associations of blood levels of Cd, Se and Zn with the prevalence of elevated serum Prostate Specific Antigen (PSA); a marker of prostate cancer. Maori and Pacific Islands men were found likely to have higher Cd exposure than New Zealand Europeans through diet, occupation and smoking. However, there was no significant difference between ethnic groups in mean blood Cd levels. Pacific Islands men had significantly higher levels of blood Se than both New Zealand European men and Maori men. Maori men had significantly higher levels of blood Zn than both New Zealand European men and Pacific Islands men. A positive association was found between blood Cd and total serum PSA. Se and Zn levels were not associated with elevated PSA. Maori and Pacific Islands men have higher prostate cancer mortality rates than New Zealand European men. Ethnic differences in mortality could be contributed to by differences in rates of disease progression, influenced by exposure and/or deficiency to trace elements. However, results did not reflect a consistent ethnic trend and highlight the complexity of the risk/protective mechanisms conferred by exposure factors. Further research is needed to ascertain whether the associations found between Cd and PSA levels are biologically important or are merely factors to be considered when interpreting PSA results clinically.

Journal ArticleDOI
TL;DR: It is reported that exposure to the carbonaceous core of DEP induces significant release of TNF-α in alveolar macrophages, a primary target for inhaled particles effect, and DEP-induced increase in NF-κB-DNA binding activity appears to protect against apoptosis.
Abstract: Exposure to particulate matter (PM25-10), including diesel exhaust particles (DEP) has been reported to induce lung injury and exacerbation of asthma and chronic obstructive pulmonary disease Alveolar macrophages play a major role in the lung's response to inhaled particles and therefore, are a primary target for PM25-10 effect The molecular and cellular events underlying DEP-induced toxicity in the lung, however, remain unclear To determine the effect of DEP on alveolar macrophages, RAW 2647 cells were grown in RPMI 1640 with supplements until confluency RAW 2647 cultures were exposed to Hank's buffered saline solution (vehicle), vehicle containing an NF-kappaB inhibitor, BAY11-7082 (25 microM with 11/2 hr pre-incubation), or vehicle containing DEP (250 microg/ml) in the presence or absence of BAY11-7082 (25 microM with 11/2 hr pre-incubation) for 4 hr and TNF-alpha release was determined by enzyme-linked immunosorbent assay and confirmed by western blots RAW 2647 apoptotic response was determined by DNA fragmentation assays U937 cells treated with campothecin (4 microg/ml x 3 hr), an apoptosis-inducing agent, were used as positive control We report that exposure to the carbonaceous core of DEP induces significant release of TNF-alpha in a concentration-dependent fashion (31 +/- 4 pg/ml, n = 4, p = 008; 162 +/- 23 pg/ml, n = 4, p < 005; 313 +/- 31 pg/ml, n = 4, p < 005 at 25, 100, and 250 microg/ml, respectively) DEP exposure, however, failed to induce any apoptotic response in RAW 2647 cells Moreover, inhibition of NF-kappaB binding activity has resulted in DEP-induced apoptotic response in alveolar macrophages, as demonstrated by the NF-kappaB inhibitor, BAY11-7082 studies The results of the present study indicate that DEP induce the release of TNF-alpha in alveolar macrophages, a primary target for inhaled particles effect DEP-induced TNF-alpha gene expression is regulated at the transcriptional level by NF-kappaB Furthermore, DEP-induced increase in NF-kappaB-DNA binding activity appears to protect against apoptosis

Journal ArticleDOI
TL;DR: Both FIH-1 and ARD-1 genes were down-regulated by the chemical treatment, which may lead to reduced levels of both proteins and result in increased level of HIF-1a and its transcriptional activity.
Abstract: Although nickel and cobalt compounds have been known to cause induction of the transcription factor hypoxia-inducible factor 1 (HIF-1) and activation of a battery of hypoxia-inducible genes in the cell, the molecular mechanisms of this induction remain unclear. The post-translational modification of HIF-1a, the oxygen-sensitive subunit of HIF-1, regulates stabilization, nuclear translocation, DNA binding activity, and transcriptional activity of the protein. Among the enzymes regulating the post-translational modification of HIF-1a, the factor inhibiting HIF-1 (FIH-1) hydroxylates the protein at asparagine 803, suppressing the interaction of HIF-1a with transcription coactivators p300/CBP and reducing the transcriptional activity of the protein. ARD-1, the acetyltransferase, acetylates HIF-1a at lysine 532, which enhances the interaction of HIF-1a with pVHL. Therefore, FIH-1 and ARD-1 negatively regulate the transcriptional activity and the stability of HIF-1a. We examined the mRNA levels of FIH-1 and ARD-1 genes after exposure nickel (II) or cobalt (II) to the cell and found that both genes were down-regulated by the chemical treatment, which may lead to reduced levels of both proteins and result in increased level of HIF-1a and its transcriptional activity.

Journal ArticleDOI
Abstract: Land contamination is one of the widely addressed problems, which is gaining importance in many developed and developing countries. International efforts are actively envisaged to remediate contaminated sites as a response to adverse health effects. Popular conventional methodologies only transfer the phase of the contaminant involving cost intensive liabilities besides handling risk of the hazardous waste. Physico-chemical methods are effective for specific wastes, but are technically complex and lack public acceptance for land remediation. iBioremediatio ni, is one of the emerging low-cost technologies that offer the possibility to destroy various contaminants using natural biological activities. Resultant non-toxic end products due to the microbial activity and insitu applicability of this technology is gaining huge public acceptance. In the present study, composting is demonstrated as a bioremediation methodology for the stabilization of contaminated lake sediments of Hyderabad, A.P, India. Lake sediment contaminated with organics is collected from two stratums--upper (0.25 m) and lower (0.5m) to set up as Pile I (Upper) and Pile II (Lower) in the laboratory. Lime as a pretreatment to the lake sediments is carried out to ensure metal precipitation. The pretreated sediment is then mixed with organic and inorganic fertilizers like cow dung, poultry manure, urea and super phosphate as initial seeding amendments. Bulking agents like sawdust and other micronutrients are provided. Continuous monitoring of process control parameters like pH, moisture content, electrical conductivity, total volatile solids and various forms of nitrogen were carried out during the entire course of the study. The stability of the compost was evaluated by assessing maturity indices like C/N, Cw (water soluble carbon), CNw (Cw/Nw), nitrification index (NH4/NO-3), Cation Exchange Capacity (CEC), germination index, humification ratio, compost mineralization index (ash content/oxidizable carbon), sorption capacity index (CEC/oxidizable carbon). Enzyme activities of agricultural interest like urease, phosphatase, P-glucosidase, dehydrogenase and BAA-hydrolyzing protease, which are involved in the nitrogen, phosphorus and carbon cycles, were also assessed. Total content of macro and micronutrients in the final compost was also determined to assess the fertilizer value. The studies revealed that composting could be applied as a remediation technology after removing the top sediment. The maturity indices that are evaluated from the present study can be used to validate the success of the remediation technology.

Journal ArticleDOI
TL;DR: It can be concluded that: 1) non-point source pollution has a significant effect on bacterial and nutrients levels in runoff water and in water resources; 2) land application of animal waste for soil fertilization makes a significant contribution to water pollution; 3) the use of tilling can significantly reduce the amount of nutrients available in runoffWater.
Abstract: Animal waste from dairy and poultry operations is an economical and commonly used fertilizer in the state of Louisiana. The application of animal waste to pasture lands not only is a source of fertilizer, but also allows for a convenient method of waste disposal. The disposal of animal wastes on land is a potential nonpoint source of water degradation. Water degradation and human health is a major concern when considering the disposal of large quantities of animal waste. The objective of this research was to determine the effect of animal waste application on biological (fecal coliform, Enterobacter spp. and Escherichia coli) and physical/chemical (temperature, pH, nitrate nitrogen, ammonia nitrogen, phosphate, copper, zinc, and sulfate) characteristics of runoff water in experimental plots. The effects of the application of animal waste have been evaluated by utilizing experimental plots and simulated rainfall events. Samples of runoff water were collected and analyzed for fecal coliforms. Fecal coliforms isolated from these samples were identified to the species level. Chemical analysis was performed following standard test protocols. An analysis of temperature, ammonia nitrogen, nitrate nitrogen, iron, copper, phosphate, potassium, sulfate, zinc and bacterial levels was performed following standard test protocols as presented in Standard Methods for the Examination of Water and Wastewater [1]. In the experimental plots, less time was required in the tilled broiler litter plots for the measured chemicals to decrease below the initial pre-treatment levels. A decrease of over 50% was noted between the first and second rainfall events for sulfate levels. This decrease was seen after only four simulated rainfall events in tilled broiler litter plots whereas broiler litter plots required eight simulated rainfall events to show this same type of reduction. A reverse trend was seen in the broiler litter plots and the tilled broiler plots for potassium. Bacteria numbers present after the simulated rainfall events were above 200/100 ml of sample water. It can be concluded that: 1) non-point source pollution has a significant effect on bacterial and nutrients levels in runoff water and in water resources; 2) land application of animal waste for soil fertilization makes a significant contribution to water pollution; 3) the use of tilling can significantly reduce the amount of nutrients available in runoff water.

Journal ArticleDOI
TL;DR: It is concluded that both animal waste and non-point source pollution may have a significant impact on human health.
Abstract: Human health is a major concern when considering the disposal of large quantities of animal waste. Health concerns could arise from exposure to pathogens and excess nitrogen associated with this form of pollution. The objective was to collect and analyze health data related to selected bacterial infections associated with the use of animal waste in Louisiana. An analysis of adverse health effects has been conducted based on the incidence/prevalence rates of campylobacteriosis, E. coli O157:H7 infection, salmonellosis and shigellosis. The number of reported cases increased during the summer months. Analysis of health data showed that reported disease cases of E. coli O157:H7 were highest among Caucasian infants in the 0-4 year old age category and in Caucasian children in the 5-9 year old age category. Fatalities resulting from salmonellosis are low and increases sharply with age. The number of reported cases of shigellosis was found to be higher in African American males and females than in Caucasians. The high rate of identification in the younger population may result from the prompt seeking of medical care, as well as the frequent ordering of stool examination when symptoms become evident among this group of the population. The association with increasing age and fatality due to salmonellosis could be attributed to declining health and weaker immune systems often found in the older population. It is concluded that both animal waste and non-point source pollution may have a significant impact on human health.

Journal ArticleDOI
TL;DR: An assessment of the health hazards caused by arsenic contamination in the drinking water in Bangladesh finds that several bio-geochemical processes are active among the region’s various geologic environments, and that each contributes to the mobilization and release of arsenic.
Abstract: Excessive amounts of arsenic (As) in the groundwater in Bangladesh and neighboring states in India are a major public health problem. About 30% of the private wells in Bangladesh exhibit high concentrations of arsenic. Over half the country, 269 out of 464 administrative units, is affected. Similar problems exist in many other parts of the world, including the Unites States. This paper presents an assessment of the health hazards caused by arsenic contamination in the drinking water in Bangladesh. Four competing hypotheses, each addressing the sources, reaction mechanisms, pathways, and sinks of arsenic in groundwater, were analyzed in the context of the geologic history and land-use practices in the Bengal Basin. None of the hypotheses alone can explain the observed variability in arsenic concentration in time and space; each appears to have some validity on a local scale. Thus, it is likely that several biogeochemical processes are active among the region's various geologic environments, and that each contributes to the mobilization and release of arsenic. Additional research efforts will be needed to understand the relationships between underlying biogeochemical factors and the mechanisms for arsenic release in various geologic settings.

Journal ArticleDOI
TL;DR: The results from the samples taken at the AFWTF indicate mobilization of undesirable trace elements through the marine and terrestrial food web and plants naturally remove heavy metals from soils, they could be employed for the restoration of this and similarly contaminated sites.
Abstract: Plants are good environmental sensors of the soil conditions in which they are growing. They also respond directly to the state of air. The tops of plants are collectors of air pollutants, and their chemical composition may be a good indicator for contaminated-areas when it is assessed against background values obtained for unpolluted vegetation. Both, aquatic and terrestrial plants are known to bioaccumulate heavy metals and therefore represent a potential source of these contaminants to the human food chain. An evaluation of heavy metals was conducted from vegetation samples collected at the Atlantic Fleet Weapons Training Facilities (AFWTF) in Vieques, Puerto Rico. In order to understand the potential risks associated to heavy metal mobilization through biological systems, it is first necessary to establish background values obtained from reference locations. This information allows a better interpretation of the significance of anthropogenic factors in changing trace elements status in soil and plants. Since Guanica State Forest is located at a similar geoclimatic zone as the AFWTF, samples at this site were used as a standard reference material and as experimental controls. Both sampling and analysis were conducted as previously described in standardized protocols using acid digestion of dry ashes. Then, levels of heavy metals were obtained by air-acetylene flame detection in an atomic absorption spectrophotometer. Our results from the samples taken at the AFWTF indicate mobilization of undesirable trace elements through the marine and terrestrial food web. Since plants naturally remove heavy metals from soils, they could be employed for the restoration of this and similarly contaminated sites.

Journal ArticleDOI
TL;DR: This research investigates the home environment in unplanned settlements of a rapidly growing city on the U.S-México border and its impact on the health of households with children under 12 years of age and highlights exposures associated with poor living conditions in informal settlements and their associated effects on health.
Abstract: People living in poverty make up nearly half of the global population and a large proportion of these individuals inhabit cities, living in informal settlements. However, only limited research on in-home environmental exposures and the associated health effects in these communities is available. This research investigates the home environment in unplanned settlements of a rapidly growing city on the U.S.-Mexico border and its impact on the health of households with children under 12 years of age. A cross-sectional design was used to assess household exposures and health outcomes at the household level. A total of 202 households were selected from two informal settlements in the peri-urban region of Ciudad Juarez, Mexico. The following variables were significantly associated with the report of at least one household member experiencing a health outcome in a two week period. Allergies were positively associated with insecticide use inside the home (adjusted Relative Odds (RO), 2.71; 95% confidence interval (CI), 1.2-6.3). Respiratory problems were associated with households using a wood burning stove vs. a gas stove (adjusted RO, 5.64; 95% CI, 1.1-27.9). Diarrhea was negatively associated with presence of a flush toilet in the home (adjusted RO, 0.22; 95% CI,0.1-0.6). Finally, eye irritations were positively associated with indoor tobacco smoke (adjusted RO, 2.23; 95% CI, 1.1-4.5). This research highlights exposures associated with poor living conditions in informal settlements and their associations with detrimental effects on health. More efforts should be made to understand the dynamics of poor urban environments including the health effects of exposures linked with poor housing conditions.

Journal ArticleDOI
TL;DR: A field kit which offers rapid, simple and safe method for precise estimation of arsenic at 10ppb in drinking water samples is developed and employs cupric chloride in combination with ferric chloride or Fenton’s reagent for the removal of hydrogen sulphide.
Abstract: Arsenic is naturally found in surface and ground waters and the inorganic forms of arsenic are the most toxic forms. The adverse health effects of arsenic may involve the respiratory, gastrointestinal, cardiovascular, nervous, and haematopoietic systems. Arsenic contamination in drinking water is a global problem widely seen in Bangladesh and West Bengal of the Indian sub continent. As there is a great demand for field test kits due to the anticipated reduction of the US EPA arsenic standard from 50ppb to 10ppb a field kit which offers rapid, simple and safe method for precise estimation of arsenic at 10ppb in drinking water samples is developed. Field methods, based on the mercuric-bromide-stain, consist of three different major parts, which are carried out stepwise. The first part of the procedure is to remove serious interference caused by hydrogen sulphide. In commercially available kits either the sulphide is oxidized to sulphate and the excess oxidizing reagent removed prior to the hydride generation step or, the hydrogen sulphide is filtered out by passing the gas stream through a filter impregnated with lead acetate during the hydride generation step. The present method employs cupric chloride in combination with ferric chloride or Fenton’s reagent for the removal of hydrogen sulphide, which is rapid, simple and more efficient. Other interferences at this step of the analyses are normally not expected for drinking water analysis. In the second step, the generation of the arsine gas involves the classical way of using zinc metal and hydrochloric acid, which produce the ‘nascent’ hydrogen, which is the actual reducing agent. Hydrochloric acid can be replaced by sulfamic acid, which is solid and avoids a major disadvantage of having to handle a corrosive liquid in the field. The arsine gas produces a yellowish spot on the reagent paper. Depending on the arsenic content, either, Yellow – H (HgBr)2 As (10–50ppb), Brown – (HgBr)3 As (50–100ppb) or Black – Hg3 As2 (>100ppb) are formed which can be precisely estimated by visual comparison with standard color chart. The results obtained by field kits agree well with the data obtained through I.C.P.AES methods. The most important characteristic for field measurement is that analytical results can be obtained on the site where the sample is taken with high precision and can be conveniently utilized for monitoring arsenic rapidly in a highly contaminated large geographical area.