scispace - formally typeset
Search or ask a question
JournalISSN: 1674-4799

International Journal of Minerals Metallurgy and Materials 

Springer Science+Business Media
About: International Journal of Minerals Metallurgy and Materials is an academic journal published by Springer Science+Business Media. The journal publishes majorly in the area(s): Microstructure & Alloy. It has an ISSN identifier of 1674-4799. Over the lifetime, 2477 publications have been published receiving 29138 citations. The journal is also known as: Kuangwu yejin yu cailiao xuebao.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the effect of chemical admixtures on the properties of fly ash geopolymer was studied to overcome the rapid set of the geopolymers in the presence of high viscosity of sodium silicate solution.
Abstract: Owing to the high viscosity of sodium silicate solution, fly ash geopolymer has the problems of low workability and rapid setting time. Therefore, the effect of chemical admixtures on the properties of fly ash geopolymer was studied to overcome the rapid set of the geopolymer in this paper. High-calcium fly ash and alkaline solution were used as starting materials to synthesize the geopolymer. Calcium chloride, calcium sulfate, sodium sulfate, and sucrose at dosages of 1wt% and 2wt% of fly ash were selected as admixtures based on concrete knowledge to improve the properties of the geopolymer. The setting time, compressive strength, and degree of reaction were recorded, and the microstructure was examined. The results show that calcium chloride significantly shortens both the initial and final setting times of the geopolymer paste. In addition, sucrose also delays the final setting time significantly. The degrees of reaction of fly ash in the geopolymer paste with the admixtures are all higher than those of the control paste. This contributes to the obvious increases in compressive strength.

179 citations

Journal ArticleDOI
TL;DR: In this article, the effect of grinding on the chemical and physical properties of rice husk ash was studied and the results showed that the use of RHA3 results in a strong and dense mortar, which is due to the better dispersion and filling effect, as well as an increase in the pozzolanic reaction.
Abstract: The effect of grinding on the chemical and physical properties of rice husk ash was studied. Four rice husk ashes with different finenesses, i.e. coarse original rice husk ash (RHA0), RHA1, RHA2, and RHA3 were used for the study. Ordinary Portland cement (OPC) was partially replaced with rice husk ash at 20% by weight of binder. The water to binder ratio (W/B) of the mortar was maintained at 110%±5% with flow table test. Specific gravity, fineness, chemical properties, compressive strength, and porosity test of mortars were determined. The differences in chemical composition of the rice husk ashes with different finenesses from the same batch are small. The use of RHA3 produces the mortars with good strength and low porosity. The strength of the mortar improves with partial replacement of RHA3 in comparison with normal coarse rice husk ash. The use of RHA3 results in a strong and dense mortar, which is due to the better dispersion and filling effect, as well as an increase in the pozzolanic reaction.

172 citations

Journal ArticleDOI
TL;DR: In this paper, the density and strength of the FA-RHA mortars with RHA/FA mass ratios of 0/100, 20/80, 40/60, and 60/40 were tested.
Abstract: The geopolymer of fly ash (FA) and rice husk ash (RHA) was prepared. The burning temperature of rice husk, the RHA fineness and the ratio of FA to RHA were studied. The density and strength of the geopolymer mortars with RHA/FA mass ratios of 0/100, 20/80, 40/60, and 60/40 were tested. The geopolymers were activated with sodium hydroxide (NaOH), sodium silicate, and heat. It is revealed that the optimum burning temperature of RHA for making FA-RHA geopolymer is 690°C. The as-received FA and the ground RHA with 1%-5% retained on No.325 sieve are suitable source materials for making geopolymer, and the obtained compressive strengths are between 12.5-56.0 MPa and are dependent on the ratio of FA/RHA, the RHA fineness, and the ratio of sodium silicate to NaOH. Relatively high strength FA-RHA geopolymer mortars are obtained using a sodium silicate/NaOH mass ratio of 4.0, delay time before subjecting the samples to heat for 1 h, and heat curing at 60°C for 48 h.

142 citations

Journal ArticleDOI
TL;DR: In this paper, a coal gasification-gas-based shaft furnace with an annual output of 10000 t direct reduction iron (DRI), a reducing gas composed of 57vol% H2 and 38vol% CO is prepared via the Ende method.
Abstract: Hydrogen metallurgy is a technology that applies hydrogen instead of carbon as a reduction agent to reduce CO2 emission, and the use of hydrogen is beneficial to promoting the sustainable development of the steel industry. Hydrogen metallurgy has numerous applications, such as H2 reduction ironmaking in Japan, ULCORED and hydrogen-based steelmaking in Europe; hydrogen flash ironmaking technology in the US; HYBRIT in the Nordics; Midrex H2™ by Midrex Technologies, Inc. (United States); H2FUTURE by Voestalpine (Austria); and SAL-COS by Salzgitter AG (Germany). Hydrogen-rich blast furnaces (BFs) with COG injection are common in China. Running BFs have been industrially tested by AnSteel, XuSteel, and BenSteel. In a currently under construction pilot plant of a coal gasification-gas-based shaft furnace with an annual output of 10000 t direct reduction iron (DRI), a reducing gas composed of 57vol% H2 and 38vol% CO is prepared via the Ende method. The life cycle of the coal gasification—gas-based shaft furnace—electric furnace short process (30wt% DRI + 70wt% scrap) is assessed with 1 t of molten steel as a functional unit. This plant has a total energy consumption per ton of steel of 263.67 kg standard coal and a CO2 emission per ton of steel of 829.89 kg, which are superior to those of a traditional BF converter process. Considering domestic materials and fuels, hydrogen production and storage, and hydrogen reduction characteristics, we believe that a hydrogen-rich shaft furnace will be suitable in China. Hydrogen production and storage with an economic and large-scale industrialization will promote the further development of a full hydrogen shaft furnace.

119 citations

Journal ArticleDOI
TL;DR: A brief introduction to big data and BDM is provided and the precautions for the utilization of BDM in the mining industry are outlined, and a future in which a global database project is established and big data is used together with other technologies supported by government policies and following international standards is envisioned.
Abstract: The mining industry faces a number of challenges that promote the adoption of new technologies. Big data, which is driven by the accelerating progress of information and communication technology, is one of the promising technologies that can reshape the entire mining landscape. Despite numerous attempts to apply big data in the mining industry, fundamental problems of big data, especially big data management (BDM), in the mining industry persist. This paper aims to fill the gap by presenting the basics of BDM. This work provides a brief introduction to big data and BDM, and it discusses the challenges encountered by the mining industry to indicate the necessity of implementing big data. It also summarizes data sources in the mining industry and presents the potential benefits of big data to the mining industry. This work also envisions a future in which a global database project is established and big data is used together with other technologies (i.e., automation), supported by government policies and following international standards. This paper also outlines the precautions for the utilization of BDM in the mining industry.

116 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023111
2022166
2021239
2020213
2019168
2018164