scispace - formally typeset
Search or ask a question

Showing papers in "International Journal of Nanomedicine in 2013"


Journal ArticleDOI
TL;DR: The results indicate that increase in precursor concentration enhances an increase in particle size, as well as the morphology of synthesized CuO nanoparticles, which are small in size, highly stable, and have significant antibacterial action on both the Gram classes of bacteria compared to larger sizes.
Abstract: Background Copper oxide (CuO) nanoparticles have attracted huge attention due to catalytic, electric, optical, photonic, textile, nanofluid, and antibacterial activity depending on the size, shape, and neighboring medium. In the present paper, we synthesized CuO nanoparticles using gum karaya, a natural nontoxic hydrocolloid, by green technology and explored its potential antibacterial application.

533 citations


Journal ArticleDOI
TL;DR: This review summarizes the most recent techniques and postmodification methods to fabricate electrospun nanofibers and electrosprayed particles for drug-delivery applications.
Abstract: Electrohydrodynamic (EHD) techniques refer to procedures that utilize electrostatic forces to fabricate fibers or particles of different shapes with sizes in the nano-range to a few microns through electrically charged fluid jet. Employing different techniques, such as blending, surface modification, and coaxial process, there is a great possibility of incorporating bioactive such molecules as drugs, DNA, and growth factors into the nanostructures fabricated via EHD techniques. By careful selection of materials and processing conditions, desired encapsulation efficiency as well as preserved bioactivity of the therapeutic agents can be achieved. The drug-loaded nanostructures produced can be applied via different routes, such as implantation, injection, and topical or oral administration for a wide range of disease treatment. Taking advantage of the recent developments in EHD techniques like the coaxial process or multilayered structures, individually controlled delivery of multiple drugs is achievable, which is of great demand in cancer therapy and growth-factor delivery. This review summarizes the most recent techniques and postmodification methods to fabricate electrospun nanofibers and electrosprayed particles for drug-delivery applications.

527 citations


Journal ArticleDOI
TL;DR: Nanotechnology-based drug delivery systems and herbal medicines are reviewed to see if nanostructured systems might be able to potentiate the action of plant extracts, reducing the required dose and side effects, and improving activity.
Abstract: Herbal medicines have been widely used around the world since ancient times. The advancement of phytochemical and phytopharmacological sciences has enabled elucidation of the composition and biological activities of several medicinal plant products. The effectiveness of many species of medicinal plants depends on the supply of active compounds. Most of the biologically active constituents of extracts, such as flavonoids, tannins, and terpenoids, are highly soluble in water, but have low absorption, because they are unable to cross the lipid membranes of the cells, have excessively high molecular size, or are poorly absorbed, resulting in loss of bioavailability and efficacy. Some extracts are not used clinically because of these obstacles. It has been widely proposed to combine herbal medicine with nanotechnology, because nanostructured systems might be able to potentiate the action of plant extracts, reducing the required dose and side effects, and improving activity. Nanosystems can deliver the active constituent at a sufficient concentration during the entire treatment period, directing it to the desired site of action. Conventional treatments do not meet these requirements. The purpose of this study is to review nanotechnology-based drug delivery systems and herbal medicines.

426 citations


Journal ArticleDOI
TL;DR: The emerging “bottom-up” method may hold great potential to address challenges to fabricate complex and functional tissues due to the lack of vascularization systems and limited diffusion properties of these large biomimetic scaffolds.
Abstract: Three-dimensional biomimetic scaffolds have widespread applications in biomedical tissue engineering because of their nanoscaled architecture, eg, nanofibers and nanopores, similar to the native extracellular matrix. In the conventional "top-down" approach, cells are seeded onto a biocompatible and biodegradable scaffold, in which cells are expected to populate in the scaffold and create their own extracellular matrix. The top-down approach based on these scaffolds has successfully engineered thin tissues, including skin, bladder, and cartilage in vitro. However, it is still a challenge to fabricate complex and functional tissues (eg, liver and kidney) due to the lack of vascularization systems and limited diffusion properties of these large biomimetic scaffolds. The emerging "bottom-up" method may hold great potential to address these challenges, and focuses on fabricating microscale tissue building blocks with a specific microarchitecture and assembling these units to engineer larger tissue constructs from the bottom up. In this review, state-of-the-art methods for fabrication of three-dimensional biomimetic scaffolds are presented, and their advantages and drawbacks are discussed. The bottom-up methods used to assemble microscale building blocks (eg, microscale hydrogels) for tissue engineering are also reviewed. Finally, perspectives on future development of the bottom-up approach for tissue engineering are addressed.

388 citations


Journal ArticleDOI
TL;DR: The antibacterial as well as antifungal activity of the nanoparticles were investigated using several microorganisms of interest, including methicillin-resistant Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Salmonella choleraesuis, and Candida albicans.
Abstract: Copper nanoparticle synthesis has been gaining attention due to its availability. However, factors such as agglomeration and rapid oxidation have made it a difficult research area. In the present work, pure copper nanoparticles were prepared in the presence of a chitosan stabilizer through chemical means. The purity of the nanoparticles was authenticated using different characterization techniques, including ultraviolet visible spectroscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and field emission scanning electron microscopy. The antibacterial as well as antifungal activity of the nanoparticles were investigated using several microorganisms of interest, including methicillin-resistant Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Salmonella choleraesuis, and Candida albicans. The effect of a chitosan medium on growth of the microorganism was studied, and this was found to influence growth rate. The size of the copper nanoparticles obtained was in the range of 2-350 nm, depending on the concentration of the chitosan stabilizer.

373 citations


Journal ArticleDOI
TL;DR: In this paper, the authors developed two resveratrol nanodelivery systems based on lipid nanoparticles to enhance the oral bioavailability for further use in medicines, supplements, and nutraceuticals.
Abstract: Introduction Resveratrol is a polyphenol found in grapes and red wines. Interest in this polyphenol has increased due to its pharmacological cardio- and neuroprotective, chemopreventive, and antiaging effects, among others. Nevertheless, its pharmacokinetic properties are less favorable, since the compound has poor bioavailability, low water solubility, and is chemically unstable. To overcome these problems, we developed two novel resveratrol nanodelivery systems based on lipid nanoparticles to enhance resveratrol's oral bioavailability for further use in medicines, supplements, and nutraceuticals. Methods and materials Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) loaded with resveratrol were successfully produced by a modified hot homogenization technique. These were completely characterized to evaluate the quality of the developed resveratrol-loaded nanoparticles. Results Cryo-scanning electron microscopy morphology studies showed spherical and uniform nanoparticles with a smooth surface. An average resveratrol entrapment efficiency of ~70% was obtained for both SLNs and NLCs. Dynamic light scattering measurements gave a Z-average of 150-250 nm, polydispersity index of ~0.2, and a highly negative zeta potential of around -30 mV with no statistically significant differences in the presence of resveratrol. These characteristics remained unchanged for at least 2 months, suggesting good stability. Differential scanning calorimetry studies confirmed the solid state of the SLNs and NLCs at both room and body temperatures. The NLCs had a less ordered crystalline structure conferred by the inclusion of the liquid lipid, since they had lower values for phase transition temperature, melting enthalpy, and the recrystallization index. The presence of resveratrol induced a disorder in the crystal structure of the nanoparticles, suggesting a favoring of its entrapment. The in vitro release studies on conditions of storage showed a negligible resveratrol release over several hours for both nanosystems and the in vitro simulation of gastrointestinal transit showed that the resveratrol remained mostly associated with the lipid nanoparticles after their incubation in digestive fluids. Conclusion Both nanodelivery systems can be considered suitable carriers for oral administration, conferring protection to the incorporated resveratrol and allowing a controlled release after uptake.

307 citations


Journal ArticleDOI
TL;DR: Silver nanoparticles undergo a size-dependent interaction with herpes simplex virus types 1 and 2 and with human parainfluenza virus type 3, and it is shown that production of silver nanoparticles from different fungi is feasible, and their antiviral activity is dependent on the production system used.
Abstract: The interaction between silver nanoparticles and viruses is attracting great interest due to the potential antiviral activity of these particles, and is the subject of much research effort in the treatment of infectious diseases. In this work, we demonstrate that silver nanoparticles undergo a size-dependent interaction with herpes simplex virus types 1 and 2 and with human parainfluenza virus type 3. We show that production of silver nanoparticles from different fungi is feasible, and their antiviral activity is dependent on the production system used. Silver nanoparticles are capable of reducing viral infectivity, probably by blocking interaction of the virus with the cell, which might depend on the size and zeta potential of the silver nanoparticles. Smaller-sized nanoparticles were able to inhibit the infectivity of the viruses analyzed.

274 citations


Journal ArticleDOI
TL;DR: This is the first report of synthesis of AgNPs using A. calcoaceticus LRVP54 and their significant synergistic activity with antibiotics resulting in increased susceptibility of multidrug-resistant bacteria evaluated as per MIC breakpoints of the CLSI standard.
Abstract: BACKGROUND The development of nontoxic methods of synthesizing nanoparticles is a major step in nanotechnology to allow their application in nanomedicine. The present study aims to biosynthesize silver nanoparticles (AgNPs) using a cell-free extract of Acinetobacter spp. and evaluate their antibacterial activity. METHODS Eighteen strains of Acinetobacter were screened for AgNP synthesis. AgNPs were characterized using various techniques. Reaction parameters were optimized, and their effect on the morphology of AgNPs was studied. The synergistic potential of AgNPs on 14 antibiotics against seven pathogens was determined by disc-diffusion, broth-microdilution, and minimum bactericidal concentration assays. The efficacy of AgNPs was evaluated as per the minimum inhibitory concentration (MIC) breakpoints of the Clinical and Laboratory Standards Institute (CLSI) guidelines. RESULTS Only A. calcoaceticus LRVP54 produced AgNPs within 24 hours. Monodisperse spherical nanoparticles of 8-12 nm were obtained with 0.7 mM silver nitrate at 70°C. During optimization, a blue-shift in ultraviolet-visible spectra was seen. X-ray diffraction data and lattice fringes (d =0.23 nm) observed under high-resolution transmission electron microscope confirmed the crystallinity of AgNPs. These AgNPs were found to be more effective against Gram-negative compared with Gram-positive microorganisms. Overall, AgNPs showed the highest synergy with vancomycin in the disc-diffusion assay. For Enterobacter aerogenes, a 3.8-fold increase in inhibition zone area was observed after the addition of AgNPs with vancomycin. Reduction in MIC and minimum bactericidal concentration was observed on exposure of AgNPs with antibiotics. Interestingly, multidrug-resistant A. baumannii was highly sensitized in the presence of AgNPs and became susceptible to antibiotics except cephalosporins. Similarly, the vancomycin-resistant strain of Streptococcus mutans was also found to be susceptible to antibiotic treatment when AgNPs were added. These biogenic AgNPs showed significant synergistic activity on the β-lactam class of antibiotics. CONCLUSION This is the first report of synthesis of AgNPs using A. calcoaceticus LRVP54 and their significant synergistic activity with antibiotics resulting in increased susceptibility of multidrug-resistant bacteria evaluated as per MIC breakpoints of the CLSI standard.

260 citations


Journal ArticleDOI
TL;DR: A detailed review of novel lipid-based nanoformulations and their lymphatic delivery via different routes, as well as the in vivo and in vitro models used to study drug transport in the lymphatic system are provided.
Abstract: The delivery of drugs and bioactive compounds via the lymphatic system is complex and dependent on the physiological uniqueness of the system. The lymphatic route plays an important role in transporting extracellular fluid to maintain homeostasis and in transferring immune cells to injury sites, and is able to avoid first-pass metabolism, thus acting as a bypass route for compounds with lower bioavailability, ie, those undergoing more hepatic metabolism. The lymphatic route also provides an option for the delivery of therapeutic molecules, such as drugs to treat cancer and human immunodeficiency virus, which can travel through the lymphatic system. Lymphatic imaging is useful in evaluating disease states and treatment plans for progressive diseases of the lymph system. Novel lipid-based nanoformulations, such as solid lipid nanoparticles and nanostructured lipid carriers, have unique characteristics that make them promising candidates for lymphatic delivery. These formulations are superior to colloidal carrier systems because they have controlled release properties and provide better chemical stability for drug molecules. However, multiple factors regulate the lymphatic delivery of drugs. Prior to lymphatic uptake, lipid-based nanoformulations are required to undergo interstitial hindrance that modulates drug delivery. Therefore, uptake and distribution of lipid-based nanoformulations by the lymphatic system depends on factors such as particle size, surface charge, molecular weight, and hydrophobicity. Types of lipid and concentration of the emulsifier are also important factors affecting drug delivery via the lymphatic system. All of these factors can cause changes in intermolecular interactions between the lipid nanoparticle matrix and the incorporated drug, which in turn affects uptake of drug into the lymphatic system. Two lipid-based nanoformulations, ie, solid lipid nanoparticles and nanostructured lipid carriers, have been administered via multiple routes (subcutaneous, pulmonary, and intestinal) for targeting of the lymphatic system. This paper provides a detailed review of novel lipid-based nanoformulations and their lymphatic delivery via different routes, as well as the in vivo and in vitro models used to study drug transport in the lymphatic system. Physicochemical properties that influence lymphatic delivery as well as the advantages of lipid-based nanoformulations for lymphatic delivery are also discussed.

242 citations


Journal ArticleDOI
TL;DR: Overall, the synergistic effect of antibiotics and nanoparticles resulted in a 0.2–7.0 fold-area increase in antibacterial activity, which clearly revealed that nanoparticles can be effectively used in combination with antibiotics in order to improve their efficacy against various pathogenic microbes.
Abstract: Biological synthesis of nanoparticles is a growing innovative approach that is relatively cheaper and more environmentally friendly than current physicochemical processes. Among various microorganisms, fungi have been found to be comparatively more efficient in the synthesis of nanomaterials. In this research work, extracellular mycosynthesis of silver nanoparticles (AgNPs) was probed by reacting the precursor salt of silver nitrate (AgNO3) with culture filtrate of Aspergillus flavus. Initially, the mycosynthesis was regularly monitored by ultraviolet-visible spectroscopy, which showed AgNP peaks of around 400-470 nm. X-ray diffraction spectra revealed peaks of different intensities with respect to angle of diffractions (2θ) corresponding to varying configurations of AgNPs. Transmission electron micrographs further confirmed the formation of AgNPs in size ranging from 5-30 nm. Combined and individual antibacterial activities of the five conventional antibiotics and AgNPs were investigated against eight different multidrug-resistant bacterial species using the Kirby-Bauer disk-diffusion method. The decreasing order of antibacterial activity (zone of inhibition in mm) of antibiotics, AgNPs, and their conjugates against bacterial group (average) was; ciprofloxacin + AgNPs (23) . imipenem + AgNPs (21) > gentamycin + AgNPs (19) > vancomycin + AgNPs (16) > AgNPs (15) . imipenem (14) > trimethoprim + AgNPs (14) > ciprofloxacin (13) > gentamycin (11) > vancomycin (4) > trimethoprim (0). Overall, the synergistic effect of antibiotics and nanoparticles resulted in a 0.2-7.0 (average, 2.8) fold-area increase in antibacterial activity, which clearly revealed that nanoparticles can be effectively used in combination with antibiotics in order to improve their efficacy against various pathogenic microbes.

238 citations


Journal ArticleDOI
TL;DR: The results indicate that the saponins, phytosterols, and phenolic compounds present in the plant extract play a major role in formation of silver and gold nanoparticles in their respective ions in solution.
Abstract: In this experiment, green-synthesized silver and gold nanoparticles were produced rapidly by treating silver and gold ions with an extract of Memecylon umbellatum leaf. The reaction process was simple and easy to handle, and was monitored using ultraviolet-visible spectroscopy. The effect of the phytochemicals present in M. umbellatum, including saponins, phenolic compounds, phytosterols, and quinones, on formation of stable silver and gold nanoparticles was investigated by Fourier-transform infrared spectroscopy. The morphology and crystalline phase of the nanoparticles were determined by transmission electron microscopy and energy-dispersive x-ray spectroscopy. The results indicate that the saponins, phytosterols, and phenolic compounds present in the plant extract play a major role in formation of silver and gold nanoparticles in their respective ions in solution. The characteristics of the nanoparticles formed suggest application of silver and gold nanoparticles as chemical sensors in the future. Given the simple and eco-friendly approach for synthesis, these nanoparticles could easily be commercialized for large-scale production.

Journal ArticleDOI
TL;DR: This work describes use of a magnetic nanoparticle that, with a well-tolerated intravenous dose, achieved a tumor concentration of 1.9 mg Fe/g tumor in a subcutaneous squamous cell carcinoma mouse model, with an applied field of 38 kA/m at 980 kHz.
Abstract: Magnetic nanoparticles heated by an alternating magnetic field could be used to treat cancers, either alone or in combination with radiotherapy or chemotherapy. However, direct intratumoral injections suffer from tumor incongruence and invasiveness, typically leaving undertreated regions, which lead to cancer regrowth. Intravenous injection more faithfully loads tumors, but, so far, it has been difficult achieving the necessary concentration in tumors before systemic toxicity occurs. Here, we describe use of a magnetic nanoparticle that, with a well-tolerated intravenous dose, achieved a tumor concentration of 1.9 mg Fe/g tumor in a subcutaneous squamous cell carcinoma mouse model, with a tumor to non-tumor ratio > 16. With an applied field of 38 kA/m at 980 kHz, tumors could be heated to 60°C in 2 minutes, durably ablating them with millimeter (mm) precision, leaving surrounding tissue intact.

Journal ArticleDOI
TL;DR: AgNPs could contribute to the development of a suitable anticancer drug and suggest that the reactive oxygen species generated by AgNPs have a significant role in apoptosis, according to the present findings.
Abstract: Background Silver nanoparticles (AgNPs) are an important class of nanomaterial for a wide range of industrial and biomedical applications. AgNPs have been used as antimicrobial and disinfectant agents due their detrimental effect on target cells. The aim of our study was to determine the cytotoxic effects of biologically synthesized AgNPs using hot aqueous extracts of the mycelia of Ganoderma neo-japonicum Imazeki on MDA-MB-231 human breast cancer cells. Methods We developed a green method for the synthesis of water-soluble AgNPs by treating silver ions with hot aqueous extract of the mycelia of G. neo-japonicum. The formation of AgNPs was characterized by ultraviolet-visible absorption spectroscopy, X-ray diffraction, dynamic light scattering, and transmission electron microscopy. Furthermore, the toxicity of synthesized AgNPs was evaluated using a series of assays: such as cell viability, lactate dehydrogenase leakage, reactive oxygen species generation, caspase 3, DNA laddering, and terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling in human breast cancer cells (MDA-MB-231). Results The ultraviolet-visible absorption spectroscopy results showed a strong resonance centered on the surface of AgNPs at 420 nm. The X-ray diffraction analysis confirmed that the synthesized AgNPs were single-crystalline, corresponding with the result of transmission electron microscopy. Treatment of MDA-MB-231 breast cancer cells with various concentrations of AgNPs (1-10 μg/mL) for 24 hours revealed that AgNPs could inhibit cell viability and induce membrane leakage in a dose-dependent manner. Cells exposed to AgNPs showed increased reactive oxygen species and hydroxyl radical production. Furthermore, the apoptotic effects of AgNPs were confirmed by activation of caspase 3 and DNA nuclear fragmentation. Conclusion The results indicate that AgNPs possess cytotoxic effects with apoptotic features and suggest that the reactive oxygen species generated by AgNPs have a significant role in apoptosis. The present findings suggest that AgNPs could contribute to the development of a suitable anticancer drug, which may lead to the development of a novel nanomedicine for the treatment of cancers.

Journal ArticleDOI
TL;DR: This review evaluates the classification, synthesis, degradation mechanisms, and biological applications of the biodegradable polymers currently being studied as drug delivery carriers and the use of nanosystems to solve current drug delivery problems are reviewed.
Abstract: Use of biodegradable polymers for biomedical applications has increased in recent decades due to their biocompatibility, biodegradability, flexibility, and minimal side effects. Applications of these materials include creation of skin, blood vessels, cartilage scaffolds, and nanosystems for drug delivery. These biodegradable polymeric nanoparticles enhance properties such as bioavailability and stability, and provide controlled release of bioactive compounds. This review evaluates the classification, synthesis, degradation mechanisms, and biological applications of the biodegradable polymers currently being studied as drug delivery carriers. In addition, the use of nanosystems to solve current drug delivery problems are reviewed.

Journal ArticleDOI
TL;DR: Improved understanding of physicochemical properties of engineered nanoparticles and their influence on biological systems facilitates the design of nanomaterials that are safe, well tolerated, and suitable for diagnostic or therapeutic use in humans.
Abstract: Improved understanding of interactions between nanoparticles and biological systems is needed to develop safety standards and to design new generations of nanomaterials. This article reviews the molecular mechanisms of cellular uptake of engineered nanoparticles, their intracellular fate, and their distribution within an organism. We have reviewed the available literature on the uptake and disposition of engineered nanoparticles. Special emphasis was placed on the analysis of experimental systems and their limitations with respect to their usefulness to predict the in vivo situation. The available literature confirms the need to study particle characteristics in an environment that simulates the situation encountered in biological systems. Phenomena such as protein binding and opsonization are of prime importance since they may have a strong impact on cellular internalization, biodistribution, and immunogenicity of nanoparticles in vitro and in vivo. Extrapolation from in vitro results to the in vivo situation in the whole organism remains a challenge. However, improved understanding of physicochemical properties of engineered nanoparticles and their influence on biological systems facilitates the design of nanomaterials that are safe, well tolerated, and suitable for diagnostic or therapeutic use in humans.

Journal ArticleDOI
TL;DR: The developed eco-friendly method for the synthesis of NPs could prove a better substitute for the physical and chemical methods currently used to prepare metallic NPs commonly used in cosmetics, foods, and medicines.
Abstract: The green synthesis of metallic nanoparticles (NPs) has attracted tremendous attention in recent years because these protocols are low cost and more environmentally friendly than standard methods of synthesis. In this article, we report a simple and eco-friendly method for the synthesis of silver NPs using an aqueous solution of Pulicaria glutinosa plant extract as a bioreductant. The as-prepared silver NPs were characterized using ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy. Moreover, the effects of the concentration of the reductant (plant extract) and precursor solution (silver nitrate), the temperature on the morphology, and the kinetics of reaction were investigated. The results indicate that the size of the silver NPs varied as the plant extract concentration increased. The as-synthesized silver NPs were phase pure and well crystalline with a face-centered cubic structure. Further, Fourier-transform infrared spectroscopy analysis confirmed that the plant extract not only acted as a bioreductant but also functionalized the NPs' surfaces to act as a capping ligand to stabilize them in the solvent. The developed eco-friendly method for the synthesis of NPs could prove a better substitute for the physical and chemical methods currently used to prepare metallic NPs commonly used in cosmetics, foods, and medicines.

Journal ArticleDOI
TL;DR: Considering the progress that has been made in understanding the properties of NDs, they can be envisioned as highly efficient drug delivery and imaging biomaterials for use in animals and humans.
Abstract: Detonation nanodiamonds (NDs) are emerging as delivery vehicles for small chemical drugs and macromolecular biotechnology products due to their primary particle size of 4 to 5 nm, stable inert core, reactive surface, and ability to form hydrogels. Nanoprobe technology capitalizes on the intrinsic fluorescence, high refractive index, and unique Raman signal of the NDs, rendering them attractive for in vitro and in vivo imaging applications. This review provides a brief introduction of the various types of NDs and describes the development of procedures that have led to stable single-digit-sized ND dispersions, a crucial feature for drug delivery systems and nanoprobes. Various approaches used for functionalizing the surface of NDs are highlighted, along with a discussion of their biocompatibility status. The utilization of NDs to provide sustained release and improve the dispersion of hydrophobic molecules, of which chemotherapeutic drugs are the most investigated, is described. The prospects of improving the intracellular delivery of nucleic acids by using NDs as a platform are exemplified. The photoluminescent and optical scattering properties of NDs, together with their applications in cellular labeling, are also reviewed. Considering the progress that has been made in understanding the properties of NDs, they can be envisioned as highly efficient drug delivery and imaging biomaterials for use in animals and humans.

Journal ArticleDOI
TL;DR: Fundamental concepts and practices used in the development of various functional nanoparticulate dosage forms are described to contribute to achievement of desired therapeutic effects that are not attainable using conventional therapies.
Abstract: The functionality of bare polylactide-co-glycolide (PLGA) nanoparticles is limited to drug depot or drug solubilization in their hard cores. They have inherent weaknesses as a drug-delivery system. For instance, when administered intravenously, the nanoparticles undergo rapid clearance from systemic circulation before reaching the site of action. Furthermore, plain PLGA nanoparticles cannot distinguish between different cell types. Recent research shows that surface functionalization of nanoparticles and development of new nanoparticulate dosage forms help overcome these delivery challenges and improve in vivo performance. Immense research efforts have propelled the development of diverse functional PLGA-based nanoparticulate delivery systems. Representative examples include PEGylated micelles/nanoparticles (PEG, polyethylene glycol), polyplexes, polymersomes, core-shell–type lipid-PLGA hybrids, cell-PLGA hybrids, receptor-specific ligand-PLGA conjugates, and theranostics. Each PLGA-based nanoparticulate dosage form has specific features that distinguish it from other nanoparticulate systems. This review focuses on fundamental concepts and practices that are used in the development of various functional nanoparticulate dosage forms. We describe how the attributes of these functional nanoparticulate forms might contribute to achievement of desired therapeutic effects that are not attainable using conventional therapies. Functional PLGA-based nanoparticulate systems are expected to deliver chemotherapeutic, diagnostic, and imaging agents in a highly selective and effective manner.

Journal ArticleDOI
TL;DR: The results of the in vitro and in vivo animal experiments suggest that PVA/COS-AgNP nanofibers should be of greater interest than PVA /COS/AgNO3 nan ofibers for clinical use as a bioactive wound dressing.
Abstract: In this study, a mixture of poly(vinyl alcohol) (PVA) and chitosan oligosaccharides (COS) was electrospun with silver nanoparticles (AgNPs) to produce fibrous mats for use in wound healing. The AgNPs were reduced by COS prior to electrospinning or Ag(+) was reduced via ultraviolet irradiation in nanofibers. The morphologies of the PVA/COS/AgNO3 and PVA/COS-AgNP nanofibers were analyzed by scanning electron microscopy. Formation of the AgNPs was investigated by field emission transmission electron microscopy, ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. We also evaluated the biocompatibility of the nanofibers, particularly their cytotoxicity to human skin fibroblasts and potential to cause primary skin irritation. The in vitro antibacterial activity and in vivo wound healing capacity of the nanofibers were also investigated. The nanofibers had a smooth surface with an average diameter of 130-192 nm. The diameters of the AgNPs were in the range of 15-22 nm. The nanofibers significantly inhibited growth of Escherichia coli and Staphylococcus aureus bacteria. PVA/COS-AgNP nanofibers accelerated the rate of wound healing over that of the control (gauze). The results of our in vitro and in vivo animal experiments suggest that PVA/COS-AgNP nanofibers should be of greater interest than PVA/COS/AgNO3 nanofibers for clinical use as a bioactive wound dressing.

Journal ArticleDOI
TL;DR: The results suggest that both GO and B-rGO exhibit toxicity to MCF-7 cells in a dose-dependent manner, with a dose > 60 μg/mL exhibiting obvious cytotoxicity effects, such as decreasing cell viability, increasing ROS generation, and releasing of lactate dehydrogenase.
Abstract: Background This paper describes an environmentally friendly ("green") approach for the synthesis of soluble graphene using Bacillus marisflavi biomass as a reducing and stabilizing agent under mild conditions in aqueous solution. In addition, the study reported here investigated the cytotoxicity effects of graphene oxide (GO) and bacterially reduced graphene oxide (B-rGO) on the inhibition of cell viability, reactive oxygen species (ROS) generation, and membrane integrity in human breast cancer cells. Methods The reduction of GO was characterized by ultraviolet-visible spectroscopy. Size distribution was analyzed by dynamic light scattering. Further, X-ray diffraction and high-resolution scanning electron microscopy were used to investigate the crystallinity of graphene and the morphologies of prepared graphene, respectively. The formation of defects further supports the bio-functionalization of graphene, as indicated in the Raman spectrum of B-rGO. Surface morphology and the thickness of the GO and B-rGO were analyzed using atomic force microscopy, while the biocompatibility of GO and B-rGO were investigated using WST-8 assays on MCF-7 cells. Finally, cellular toxicity was evaluated by ROS generation and membrane integrity assays. Results In this study, we demonstrated an environmentally friendly, cost-effective, and simple method for the preparation of water-soluble graphene using bacterial biomass. This reduction method avoids the use of toxic reagents such as hydrazine and hydrazine hydrate. The synthesized soluble graphene was confirmed using various analytical techniques. Our results suggest that both GO and B-rGO exhibit toxicity to MCF-7 cells in a dose-dependent manner, with a dose > 60 μg/mL exhibiting obvious cytotoxicity effects, such as decreasing cell viability, increasing ROS generation, and releasing of lactate dehydrogenase. Conclusion We developed a green and a simple approach to produce graphene using bacterial biomass as a reducing and stabilizing agent. The proposed approach confers B-rGO with great potential for various biological and biomedical applications.

Journal ArticleDOI
TL;DR: 3D conductive scaffolds prepared by employing a biocompatible conductive polymer, ie, poly(3,4-ethylenedioxythiophene) poly(4-styrene sulfonate) (PEDOT:PSS), in the optimized nanocomposite of gelatin and bioactive glass are shown to be structurally more favorable for bone tissue engineering.
Abstract: Bone healing can be significantly expedited by applying electrical stimuli in the injured region. Therefore, a three-dimensional (3D) ceramic conductive tissue engineering scaffold for large bone defects that can locally deliver the electrical stimuli is highly desired. In the present study, 3D conductive scaffolds were prepared by employing a biocompatible conductive polymer, ie, poly(3,4-ethylenedioxythiophene) poly(4-styrene sulfonate) (PEDOT:PSS), in the optimized nanocomposite of gelatin and bioactive glass. For in vitro analysis, adult human mesenchymal stem cells were seeded in the scaffolds. Material characterizations using hydrogen-1 nuclear magnetic resonance, in vitro degradation, as well as thermal and mechanical analysis showed that incorporation of PEDOT:PSS increased the physiochemical stability of the composite, resulting in improved mechanical properties and biodegradation resistance. The outcomes indicate that PEDOT:PSS and polypeptide chains have close interaction, most likely by forming salt bridges between arginine side chains and sulfonate groups. The morphology of the scaffolds and cultured human mesenchymal stem cells were observed and analyzed via scanning electron microscope, micro-computed tomography, and confocal fluorescent microscope. Increasing the concentration of the conductive polymer in the scaffold enhanced the cell viability, indicating the improved microstructure of the scaffolds or boosted electrical signaling among cells. These results show that these conductive scaffolds are not only structurally more favorable for bone tissue engineering, but also can be a step forward in combining the tissue engineering techniques with the method of enhancing the bone healing by electrical stimuli.

Journal ArticleDOI
TL;DR: This review has summarized and highlighted the recent advancement of nanostructured particles and scaffolds for the treatment of cancer bone metastasis, osteosarcoma, bone infections and inflammatory diseases, osteoarthritis, as well as for bone regeneration.
Abstract: Nanotechnology is a vigorous research area and one of its important applications is in biomedical sciences. Among biomedical applications, targeted drug delivery is one of the most extensively studied subjects. Nanostructured particles and scaffolds have been widely studied for increasing treatment efficacy and specificity of present treatment approaches. Similarly, this technique has been used for treating bone diseases including bone regeneration. In this review, we have summarized and highlighted the recent advancement of nanostructured particles and scaffolds for the treatment of cancer bone metastasis, osteosarcoma, bone infections and inflammatory diseases, osteoarthritis, as well as for bone regeneration. Nanoparticles used to deliver deoxyribonucleic acid and ribonucleic acid molecules to specific bone sites for gene therapies are also included. The investigation of the implications of nanoparticles in bone diseases have just begun, and has already shown some promising potential. Further studies have to be conducted, aimed specifically at assessing targeted delivery and bioactive scaffolds to further improve their efficacy before they can be used clinically.

Journal ArticleDOI
TL;DR: Evidence that AgNPs have beneficial effects in preventing H3N2 influenza virus infection both in vitro and in vivo is provided, andAgNPs can be used as potential therapeutics for inhibiting outbreaks of influenza is demonstrated.
Abstract: Silver nanoparticles (AgNPs) have attracted much attention as antimicrobial agents and have demonstrated efficient inhibitory activity against various viruses, including human immunodeficiency virus, hepatitis B virus, and Tacaribe virus. In this study, we investigated if AgNPs could have antiviral and preventive effects in A/Human/Hubei/3/2005 (H3N2) influenza virus infection. Madin-Darby canine kidney cells infected with AgNP-treated H3N2 influenza virus showed better viability (P<0.05 versus influenza virus control) and no obvious cytopathic effects compared with an influenza virus control group and a group treated with the solvent used for preparation of the AgNPs. Hemagglutination assay indicated that AgNPs could significantly inhibit growth of the influenza virus in Madin-Darby canine kidney cells (P<0.01 versus the influenza virus control). AgNPs significantly reduced cell apoptosis induced by H3N2 influenza virus at three different treatment pathways (P<0.05 versus influenza virus control). H3N2 influenza viruses treated with AgNPs were analyzed by transmission electron microscopy and found to interact with each other, resulting in destruction of morphologic viral structures in a time-dependent manner in a time range of 30 minutes to 2 hours. In addition, intranasal AgNP administration in mice significantly enhanced survival after infection with the H3N2 influenza virus. Mice treated with AgNPs showed lower lung viral titer levels and minor pathologic lesions in lung tissue, and had a marked survival benefit during secondary intranasal passage in vivo. These results provide evidence that AgNPs have beneficial effects in preventing H3N2 influenza virus infection both in vitro and in vivo, and demonstrate that AgNPs can be used as potential therapeutics for inhibiting outbreaks of influenza.

Journal ArticleDOI
TL;DR: A physiologically based pharmacokinetic model was developed in this study for ionic silver and nanosilver and it is indicated that in vivo, it is more likely that silver nanoparticles are directly stored as insoluble salt particles than dissolve into Ag+; and compartments of the mononuclear phagocytic system play a minor role in exposure levels that are relevant for human consumers.
Abstract: Silver is a strong antibiotic that is increasingly incorporated into consumer products as a bulk, salt, or nanosilver, thus potentially causing side-effects related to human exposure. However, the fate and behavior of (nano)silver in the human body is presently not well understood. In order to aggregate the existing experimental information, a physiologically based pharmacokinetic model (PBPK) was developed in this study for ionic silver and nanosilver. The structure of the model was established on the basis of toxicokinetic data from intravenous studies. The number of calibrated parameters was minimized in order to enhance the predictive capability of the model. We validated the model structure for both silver forms by reproducing exposure conditions (dermal, oral, and inhalation) of in vivo experiments and comparing simulated and experimentally assessed organ concentrations. Therefore, the percutaneous, intestinal, or pulmonary absorption fraction was estimated based on the blood silver concentration of the respective experimental data set. In all of the cases examined, the model could successfully predict the biodistribution of ionic silver and 15-150 nm silver nanoparticles, which were not coated with substances designed to prolong the circulatory time (eg, polyethylene glycol). Furthermore, the results of our model indicate that: (1) within the application domain of our model, the particle size and coating had a minor influence on the biodistribution; (2) in vivo, it is more likely that silver nanoparticles are directly stored as insoluble salt particles than dissolve into Ag + ; and (3) compartments of the mononuclear phagocytic system play a minor role in exposure levels that are relevant for human consumers. We also give an example of how the model can be used in exposure and risk assessments based on five different exposure scenarios, namely dietary intake, use of three separate consumer products, and occupational exposure.

Journal ArticleDOI
TL;DR: In vivo results showed that both nano-HA/PCL composite scaffolds and PCL scaffolds exhibited good biocompatibility and osteogenesis and fulfilled all the basic requirements of bone tissue engineering scaffolds, which show large potential for use in orthopedic and reconstructive surgery.
Abstract: The regeneration of functional tissue in osseous defects is a formidable challenge in orthopedic surgery. In the present study, a novel biomimetic composite scaffold, here called nano-hydroxyapatite (HA)/poly-e-caprolactone (PCL) was fabricated using a selective laser sintering technique. The macrostructure, morphology, and mechanical strength of the scaffolds were characterized. Scanning electronic microscopy (SEM) showed that the nano-HA/PCL scaffolds exhibited predesigned, well-ordered macropores and interconnected micropores. The scaffolds have a range of porosity from 78.54% to 70.31%, and a corresponding compressive strength of 1.38 MPa to 3.17 MPa. Human bone marrow stromal cells were seeded onto the nano-HA/PCL or PCL scaffolds and cultured for 28 days in vitro. As indicated by the level of cell attachment and proliferation, the nano-HA/PCL showed excellent biocompatibility, comparable to that of PCL scaffolds. The hydrophilicity, mineralization, alkaline phosphatase activity, and Alizarin Red S staining indicated that the nano-HA/PCL scaffolds are more bioactive than the PCL scaffolds in vitro. Measurements of recombinant human bone morphogenetic protein-2 (rhBMP-2) release kinetics showed that after nano-HA was added, the material increased the rate of rhBMP-2 release. To investigate the in vivo biocompatibility and osteogenesis of the composite scaffolds, both nano-HA/PCL scaffolds and PCL scaffolds were implanted in rabbit femur defects for 3, 6, and 9 weeks. The wounds were studied radiographically and histologically. The in vivo results showed that both nano-HA/PCL composite scaffolds and PCL scaffolds exhibited good biocompatibility. However, the nano-HA/PCL scaffolds enhanced the efficiency of new bone formation more than PCL scaffolds and fulfilled all the basic requirements of bone tissue engineering scaffolds. Thus, they show large potential for use in orthopedic and reconstructive surgery.

Journal ArticleDOI
TL;DR: A brief introduction of the porous microsphere, its characteristics, preparation methods, applications, and a brief summary of existing problems and research tendencies are given.
Abstract: Porous microspheres have drawn great attention in the last two decades for their potential applications in many fields, such as carriers for drugs, absorption and desorption of substances, pulmonary drug delivery, and tissue regeneration. The application of porous microspheres has become a feasible way to address existing problems. In this essay, we give a brief introduction of the porous microsphere, its characteristics, preparation methods, applications, and a brief summary of existing problems and research tendencies.

Journal ArticleDOI
TL;DR: The recent data show that intravitreal injection of targeted liposomes encapsulating an angiogenesis inhibitor caused significantly greater suppression of choroidal neovascularization than did the injection of free drug.
Abstract: Poor drug delivery to lesions in patients' eyes is a major obstacle to the treatment of ocular diseases. The accessibility of these areas to drugs is highly restricted by the presence of barriers, including the corneal barrier, aqueous barrier, and the inner and outer blood-retinal barriers. In particular, the posterior segment is difficult to reach for drugs because of its structural peculiarities. This review discusses various barriers to drug delivery and provides comprehensive information for designing nanoparticle-mediated drug delivery systems for the treatment of ocular diseases. Nanoparticles can be designed to improve penetration, controlled release, and drug targeting. As highlighted in this review, the therapeutic efficacy of drugs in ocular diseases has been reported to be enhanced by the use of nanoparticles such as liposomes, micro/nanospheres, microemulsions, and dendrimers. Our recent data show that intravitreal injection of targeted liposomes encapsulating an angiogenesis inhibitor caused significantly greater suppression of choroidal neovascularization than did the injection of free drug. Recent progress in ocular drug delivery systems research has provided new insights into drug development, and the use of nanoparticles for drug delivery is thus a promising approach for advanced therapy of ocular diseases.

Journal ArticleDOI
TL;DR: The results show the AgNP had potent bactericidal activity on Staphylococcus aureus and Escherichia coli, as well as a strong antibacterial activity against gram-negative bacteria, as compared to gram-positive bacteria with a dose-dependent effect, thus providing a clinical ultrasound gel with bactericidal property for prevention of cross infections.
Abstract: Eco-friendly green synthesis with plant extracts plays a very important role in nanotechnology, without any harmful chemicals. In this report, the synthesis of water-soluble silver nanoparticles was developed by treating silver ions with Chrysanthemum morifolium Ramat. extract at room temperature. The effect of the extract on the formation of silver nanoparticles was characterized by ultraviolet and visible absorption spectroscopy, X-ray diffraction, transmission electron microscopy, and Fourier transform infrared spectroscopy. The ultraviolet and visible absorption spectroscopy results show a strong resonance centered on the surface of silver nanoparticles (AgNP) at 430 nm. The Fourier transform infrared spectroscopy spectral study demonstrates Chrysanthemum morifolium Ramat. extract acted as the reducing and stabilizing agent during the synthesis. The X-ray diffraction analysis confirmed that the synthesized AgNP are single crystallines, corresponding with the result of transmission electron microscopy. Water-soluble AgNP, with an approximate size of 20 nm-50 nm were also observed in the transmission electron microscopy image. The bactericidal properties of the synthesized AgNP were investigated using the agar-dilution method and the growth-inhibition test. The results show the AgNP had potent bactericidal activity on Staphylococcus aureus and Escherichia coli, as well as a strong antibacterial activity against gram-negative bacteria, as compared to gram-positive bacteria with a dose-dependent effect, thus providing a clinical ultrasound gel with bactericidal property for prevention of cross infections.

Journal ArticleDOI
Yikang Dai1, Rui Zhou, Lin Liu, Yi Lu, Jianping Qi, Wei Wu 
TL;DR: Liposomes containing sodium taurocholate and sodium glycocholate are potential carriers in ocular drug delivery systems, given their low toxicity and vastly improved permeability.
Abstract: The objective of this study was to investigate the potential of liposomes containing bile salts as an ophthalmic delivery system for tacrolimus to improve corneal permeability. Liposomes containing bile salts, including sodium taurocholate, sodium deoxycholate, and sodium glycocholate, were produced by the thin-film dispersion method with a particle size of approximately 100 nm and an entrapment efficiency of more than 90%. Less than 5% tacrolimus was released from conventional liposomes and from liposomes containing sodium taurocholate, sodium deoxycholate, or sodium glycocholate over 12 hours. The cellular uptake of conventional liposomes was significantly higher than that of liposomes containing bile salts. However, liposomes containing bile salts exerted a 3-4-fold increase of tacrolimus in ex vivo corneal transport of tacrolimus compared with conventional liposomes. When rabbit eyes were treated with a DiI perchlorate-loaded liposome suspension, liposomes containing bile salts showed fast and sustained penetration across the cornea. Unfortunately, liposomes containing sodium deoxycholate caused toxicity or irritation to both spontaneously derived human corneal epithelial cells and the rabbit cornea. Therefore, liposomes containing sodium taurocholate and sodium glycocholate are potential carriers in ocular drug delivery systems, given their low toxicity and vastly improved permeability.

Journal ArticleDOI
TL;DR: A number of applications of Fbg- and Fbn-based carriers in the field of biomaterials, including the delivery of drugs, active biomolecules, cells, and genes, that have been effectively used in tissue engineering and regenerative medicine are featured.
Abstract: Over the past two decades, many types of natural and synthetic polymer-based micro- and nanocarriers, with exciting properties and applications, have been developed for application in various types of tissue regeneration, including bone, cartilage, nerve, blood vessels, and skin. The development of suitable polymers scaffold designs to aid the repair of specific cell types have created diverse and important potentials in tissue restoration. Fibrinogen (Fbg)- and fibrin (Fbn)-based micro- and nanostructures can provide suitable natural matrix environments. Since these primary materials are abundantly available in blood as the main coagulation proteins, they can easily interact with damaged tissues and cells through native biochemical interactions. Fbg- and Fbn-based micro and nanostructures can also be consecutively furnished/or encapsulated and specifically delivered, with multiple growth factors, proteins, and stem cells, in structures designed to aid in specific phases of the tissue regeneration process. The present review has been carried out to demonstrate the progress made with micro and nanoscaffold applications and features a number of applications of Fbg- and Fbn-based carriers in the field of biomaterials, including the delivery of drugs, active biomolecules, cells, and genes, that have been effectively used in tissue engineering and regenerative medicine.