scispace - formally typeset
Search or ask a question

Showing papers in "International Journal of Oncology in 2013"


Journal ArticleDOI
TL;DR: The complex pathogenetic mechanisms of gastric carcinogenesis in which HP is involved are discussed, the main approaches to the diagnosis, prevention, surveillance and treatment of pre-malignant lesions associated with HP infection, and the most effective way to detect GC in its earlier stages are discussed.
Abstract: Gastric cancer (GC) is one of the leading types of cancer worldwide, particularly in East Asian populations Helicobacter pylori (HP) infection has been established as a major risk factor for GC Although more than 50% of the world population is infected with this bacterium, less than 2% develop GC Therefore, further risk factors (such as host genetic polymorphisms and lifestyle, as well as environmental and epigenetic factors) may also play a role in its occurrence The correlation between HP infection and GC represents a typical model of a multi‑step process, characterized by some pre-neoplastic lesions with a high risk of progression (atrophic gastritis, intestinal metaplasia and dysplasia) In addition, HP also plays an oncogenic role in the development of mucosa‑associated lymphoid tissue (MALT) lymphoma, that accounts for approximately 3% of all gastric tumors Hyperplastic polyps often arise in patients with atrophic gastric mucosa and HP‑associated gastritis (25% of cases); however, their malignant transformation is rare (<3% of cases) A number of trials have demonstrated the possibility of cancer prevention through HP screening and eradication, particularly in high‑risk populations, whereas it may not be cost‑effective in areas of low risk In this review, we discuss i) the complex pathogenetic mechanisms of gastric carcinogenesis in which HP is involved; ii) the main approaches to the diagnosis, prevention, surveillance and treatment of pre-malignant lesions associated with HP infection; iii) the most effective way to detect GC in its earlier stages; and iv) the most important contribution to reducing the burden of GC

185 citations


Journal ArticleDOI
TL;DR: Hypoxia in the tumor microenvironment stimulates macrophages to further produce VEGF and suppress the T-cell immune responses, thus, enhancing the evasion of tumor cells and ultimately metastasis.
Abstract: It is well established that the tumor microenvironment plays a major role in the aggressive behavior of malignant solid tumors. Among cell types associated with tumor microenvironment, tumor-associated macrophages (TAMs) are the most influential for tumor progression. Breast cancer is characterized by having a large population of TAMs, and experimental models have exposed multiple mechanisms by which TAMs interact with and influence the surrounding tumor cells. The process of metastasis involves tumor cells gaining access to the tissue outside the immediate tumor environment and invading the confining extracellular matrix (ECM). Supporting this process, TAMs secrete proangiogenic factors such as VEGF to build a network of vessels that provide nutrition for tumor cells, but also function as channels of transport into the ECM. Additionally, TAMs release factors to decrease the local pro-inflammatory antitumor response, suppressing it and providing a means of escape of the tumor cells. Similarly, hypoxia in the tumor microenvironment stimulates macrophages to further produce VEGF and suppress the T-cell immune responses, thus, enhancing the evasion of tumor cells and ultimately metastasis. Given the multiple roles of TAMS in breast cancer progression and metastasis, therapies targeting these cells are in development and demonstrate promising results.

179 citations


Journal ArticleDOI
TL;DR: The characteristics of the glucans from mycelial walls as modulators of the immunity and their possible use as antitumor treatments are reviewed.
Abstract: New foods and natural biological modulators have recently become of scientific interest in the investigation of the value of traditional medical therapeutics. Glucans have an important part in this renewed interest. These fungal wall components are claimed to be useful for various medical purposes and they are obtained from medicinal mushrooms commonly used in traditional Oriental medicine. The immunotherapeutic properties of fungi extracts have been reported, including the enhancement of anticancer immunity responses. These properties are principally related to the stimulation of cells of the innate immune system. The discovery of specific receptors for glucans on dendritic cells (dectin-1), as well as interactions with other receptors, mainly expressed by innate immune cells (e.g., Toll-like receptors, complement receptor-3), have raised new attention toward these products as suitable therapeutic agents. We briefly review the characteristics of the glucans from mycelial walls as modulators of the immunity and their possible use as antitumor treatments.

177 citations


Journal ArticleDOI
TL;DR: It is shown that the expression of miR-21 was overexpressed in CRC compared with adenomas and normal tissues, and it may serve as a novel therapeutic target in CRC.
Abstract: The aim of this study was to determine a role of microRNA-21 (miR-21) in colorectal cancer (CRC) and to elucidate the regulation of phosphatase and tensin homologue (PTEN) gene by miR-21. MiR-21 expression was investigated in 30 CRC samples and five CRC cell lines. In this study, we show that the expression of miR-21 was overexpressed in CRC compared with adenomas and normal tissues. Patients with poor differentiation, lymph node metastasis and advanced TNM stage showed significantly high expression of miR-21. Inhibition of miR-21 in the HCT116 cell line reduced cellular proliferation, migration and invasion, induced apoptosis and inhibited cell cycle progression. The PTEN protein levels in CRC tissues and cells had an inverse correlation with miR-21 expression. Anti-miR-21-transfected cells increased PTEN protein expression without changing the PTEN mRNA level and increased a luciferase-reporter activity. MiR-21 targets PTEN at the post-transcriptional level and regulates cell proliferation and invasion in CRC. It may serve as a novel therapeutic target in CRC.

172 citations


Journal ArticleDOI
TL;DR: Results confirmed previous results of an association between mobile and cordless phone use and malignant brain tumours and provide support for the hypothesis that RF-EMFs play a role both in the initiation and promotion stages of carcinogenesis.
Abstract: Previous studies have shown a consistent associa- tion between long-term use of mobile and cordless phones and glioma and acoustic neuroma, but not for meningioma. When used these phones emit radiofrequency electromagnetic fields (RF-EMFs) and the brain is the main target organ for the hand- held phone. The International Agency for Research on Cancer (IARC) classified in May, 2011 RF-EMF as a group 2B, i.e. a 'possible' human carcinogen. The aim of this study was to further explore the relationship between especially long-term (>10 years) use of wireless phones and the development of malignant brain tumours. We conducted a new case-control study of brain tumour cases of both genders aged 18-75 years and diagnosed during 2007-2009. One population-based control matched on gender and age (within 5 years) was used to each case. Here, we report on malignant cases including all available controls. Exposures on e.g. use of mobile phones and cordless phones were assessed by a self-administered questionnaire. Unconditional logistic regression analysis was performed, adjusting for age, gender, year of diagnosis and socio-economic index using the whole control sample. Of the cases with a malignant brain tumour, 87% (n=593) participated, and 85% (n=1,368) of controls in the whole study answered the questionnaire. The odds ratio (OR) for mobile phone use of the analogue type was 1.8, 95% confidence interval (CI)=1.04 -3.3, increasing with >25 years of latency (time since first exposure) to an OR=3.3, 95% CI=1.6-6.9. Digital 2G mobile phone use rendered an OR=1.6, 95% CI=0.996-2.7, increasing with latency >15-20 years to an OR=2.1, 95% CI=1.2-3.6. The results for cordless phone use were OR=1.7, 95% CI=1.1-2.9, and, for latency of 15-20 years, the OR=2.1, 95% CI=1.2-3.8. Few participants had used a cordless phone for >20-25 years. Digital type of wireless phones (2G and 3G mobile phones, cordless phones) gave increased risk with latency >1-5 years, then a lower risk in the following latency groups, but again increasing risk with latency >15-20 years. Ipsilateral use resulted in a higher risk than contralateral mobile and cordless phone use. Higher ORs were calculated for tumours in the temporal and overlap- ping lobes. Using the meningioma cases in the same study as reference entity gave somewhat higher ORs indicating that the results were unlikely to be explained by recall or observational bias. This study confirmed previous results of an association between mobile and cordless phone use and malignant brain tumours. These findings provide support for the hypothesis that RF-EMFs play a role both in the initiation and promotion stages of carcinogenesis.

136 citations


Journal ArticleDOI
TL;DR: It is shown that isoflavones, especially genistein, could promote colon cancer cell growth inhibition and facilitate apoptosis and cell cycle arrest in the G2/M phase and the ATM/p53-p21 cross-regulatory network may play a crucial role in mediating the anticarcinogenic activities of genisteIn in colon cancer.
Abstract: Soybean isoflavones have been used as a potential preventive agent in anticancer research for many years. Genistein is one of the most active flavonoids in soybeans. Accumulating evidence suggests that genistein alters a variety of biological processes in estrogen-related malignancies, such as breast and prostate cancers. However, the molecular mechanism of genistein in the prevention of human colon cancer remains unclear. Here we attempted to elucidate the anticarcinogenic mechanism of genistein in human colon cancer cells. First we evaluated the growth inhibitory effect of genistein and two other isoflavones, daidzein and biochanin A, on HCT-116 and SW-480 human colon cancer cells. In addition, flow cytometry was performed to observe the morphological changes in HCT-116/SW-480 cells undergoing apoptosis or cell cycle arrest, which had been visualized using Annexin V-FITC and/or propidium iodide staining. Real-time PCR and western blot analyses were also employed to study the changes in expression of several important genes associated with cell cycle regulation. Our data showed that genistein, daidzein and biochanin A exhibited growth inhibitory effects on HCT-116/SW-480 colon cancer cells and promoted apoptosis. Genistein showed a significantly greater effect than the other two compounds, in a time- and dose-dependent manner. In addition, genistein caused cell cycle arrest in the G2/M phase, which was accompanied by activation of ATM/p53, p21waf1/cip1 and GADD45α as well as downregulation of cdc2 and cdc25A demonstrated by q-PCR and immunoblotting assay. Interestingly, genistein induced G2/M cell cycle arrest in a p53-dependent manner. These findings exemplify that isoflavones, especially genistein, could promote colon cancer cell growth inhibition and facilitate apoptosis and cell cycle arrest in the G2/M phase. The ATM/p53-p21 cross-regulatory network may play a crucial role in mediating the anticarcinogenic activities of genistein in colon cancer.

131 citations


Journal ArticleDOI
TL;DR: A type of DOX prodrug, cleaved by cathepsin B (Cat B), which is highly upregulated in malignant tumors and premalignant lesions, has been developed to achieve a higher DOX concentration in tumor tissue and a lower concentration in normal tissue so as to enhance the efficacy and reduce toxicity to normal cells.
Abstract: Doxorubicin (DOX) is one of the most effective cytotoxic anticancer drugs used for the treatment of hematological malignancies, as well as a broad range of solid tumors. However, the clinical applications of this drug have long been limited due to its severe dose-dependent toxicities. Therefore, DOX derivatives and analogs have been developed to address this issue. A type of DOX prodrug, cleaved by cathepsin B (Cat B), which is highly upregulated in malignant tumors and premalignant lesions, has been developed to achieve a higher DOX concentration in tumor tissue and a lower concentration in normal tissue, so as to enhance the efficacy and reduce toxicity to normal cells. In this review, we focused on Cat B-cleavable DOX prodrugs and discussed the efficacy of these prodrugs, demonstrated by preclinical and clinical developments.

126 citations


Journal ArticleDOI
Hoon Hur1, Yi Xuan1, Young Bae Kim1, Gwang Lee1, Wooyoung Shim1, Jisoo Yun1, In-Hye Ham1, Sang-Uk Han1 
TL;DR: PDK- 1 may serve as a biomarker of poor prognosis in patients with gastric cancer and PDK-1 inhibitors such as DCA may be considered an additional treatment option for patients with PDK -1-expressing gastric cancers.
Abstract: In contrast to mitochondria in healthy cells, which utilize oxidative phosphorylation, malignant cells undergo elevated glycolysis for energy production using glucose. The objectives of this study were to evaluate whether the expres- sion of various molecules, including pyruvate dehydrogenase kinase-1 (PDK-1), is involved in the altered glucose metabolism associated with gastric cancer prognosis and to assess the role of a therapeutic agent in targeting glucose metabolism in gastric cancer. Immunohistochemistry was performed on gastric cancer tissues obtained from 152 patients who underwent curative resection to assess the expression of hypoxia-inducible factor-1α (HIF-1α), glucose transporter-1 (GLUT-1), hexokinase-2 (HK-2) and PDK-1. In an in vitro analysis, the lactate production and glucose uptake levels, cellular viability and 5-fluorouracil (5-FU) responses were evaluated before and after treatment with dichloroacetate (DCA), a PDK-1 inhibitor, in the MKN45 and AGS gastric cancer cell lines and in the non-cancerous HEK293 cell line. GLUT-1 and PDK-1 expression was significantly asso - ciated with tumor progression, although only PDK-1 expression was an independent prognostic factor for patients who received 5-FU adjuvant treatment. There was no significant difference in cell viability between the HEK293 and gastric cancer cell lines following DCA treatment. However, DCA treatment reduced lactate production and increased responsiveness to 5-FU in MKN45 cells, which expressed high levels of PDK-1 in comparison to the other cell lines. Thus, PDK-1 may serve as a biomarker of poor prognosis in patients with gastric cancer. In addition, PDK-1 inhibitors such as DCA may be considered an additional treatment option for patients with PDK-1-expressing gastric cancers.

118 citations


Journal ArticleDOI
TL;DR: Specific miRNA profiling deregulation in OS clinical samples are assessed and suggest that the expression ofmiR-1 and miR-133b may control cell proliferation and cell cycle through MET protein expression modulation.
Abstract: miRNA profile deregulation affecting downstream signaling pathways activates endpoints that represent potential biomarkers for prognosis and treatment of tumor patients. In the past 20 years conventional therapy for osteosarcoma (OS) reached a survival plateau, highlighting the need for new therapeutic approaches. In this study, microarray unsupervised and supervised analysis identified, respectively, 100 and 40 differentially expressed miRNAs in OS samples with different grades of malignancy compared to normal bone. When analyzing low-grade and high-grade OS by unsupervised analysis, 12 miRNAs were found to be differentially expressed. Real‑time PCR performed on a larger series of OS confirmed a significant lower expression of miR-1, miR‑133b and miR-378* in tumors with respect to control, also showing lower mRNA levels in 31 high-grade OS than in 25 low-grade and in metastatic versus non‑metastatic patients. We demonstrated that miR-1 and miR133b were downregulated in OS cell lines compared to normal osteoblasts. Secondly, by transfection with miRNA precursor molecules, we demonstrated that the ectopic expression of miR-1 and miR-133b in U2-OS cell lines significantly reduced cell proliferation and MET protein expression and negatively regulated cell invasiveness and motility in a short-term assay. Cell cycle distribution revealed block in G(1) and delay of cell cycle progression associated with increased apoptosis in miR-1- and miR‑133b‑transfected cells, respectively. Our data assessed specific miRNA profiling deregulation in OS clinical samples and suggest that the expression of miR-1 and miR-133b may control cell proliferation and cell cycle through MET protein expression modulation.

115 citations


Journal ArticleDOI
TL;DR: It is demonstrated that loss of WT-p53 may promote the bone metastasis of PCa at least partially through repressing miR-145 to elevate EMT and stemness of cancer cells.
Abstract: The principal problem arising from prostate cancer (PCa) is its propensity to metastasize to bone and the mechanism(s) need to be further elucidated. The tumor suppressor p53 plays an important role in regulating the epithelial-mesenchymal transition (EMT) and cancer cell stemness, which have been proposed to play critical roles in cancer metastasis. MiR-145, a direct target of p53, represses bone metastasis of PCa and is involved in regulating EMT and cancer cell stemness. However, it is unknown whether wild‑type p53 (WT-p53) plays a role in regulating invasion, EMT and cancer cell stemness of PCa cells and whether miR-145 mediates the function of WT-p53. In the present study, we found that ectopic expression of WT-p53 inhibited the migration and invasion, and enhanced the adhesion of p53-null PC-3 cells derived from PCa bone metastasis. Furthermore, WT-p53 suppressed the expression of the mesenchymal markers fibronectin, vimentin, N-cadherin, ZEB2 and upregulated the expression of the epithelial marker E-cadherin in PC-3 cells. Moreover, WT-p53 also suppressed colony formation, tumor sphere formation and expression of CSC markers and stemness factors including CD44, Oct4, c-Myc and Klf4 in PC-3 cells. Importantly, WT-p53 upregulated the expression of miR-145, and the inhibitory effects of WT-p53 on migration, invasion, EMT and stemness of PC-3 cells were reversed by anti-miR-145. Together, our findings demonstrate that WT-p53 suppresses migration, invasion, EMT and stemness in PC-3 cells at least partially through modulating miR-145. These results suggest that loss of WT-p53 may promote the bone metastasis of PCa at least partially through repressing miR-145 to elevate EMT and stemness of cancer cells.

115 citations


Journal ArticleDOI
TL;DR: Interference with this process can be achieved using antisense miRNA (antagomiR) molecules targeting miR-221, inducing the down-regulation of Slug and the upregulation of p27 Kip1 .
Abstract: MicroRNAs (miRNAs or miRs) are a family of small non‑coding RNAs that regulate gene expression by the sequence-selective targeting of mRNAs, leading to translational repression or mRNA degradation, depending on the degree of complementarity with target mRNA sequences. miRNAs play a crucial role in cancer. In the case of breast tumors, several studies have demonstrated a correlation between: i) the expression profile of oncogenic miRNAs (oncomiRs) and tumor suppressor miRNAs; and ii) the tumorigenic potential of triple-negative [estrogen receptor (ER), progesterone receptor (PR) and Her2/neu] primary breast cancers. Among the miRNAs involved in breast cancer, miR-221 plays a crucial role for the following reasons: i) miR-221 is significantly overexpressed in triple-negative primary breast cancer; ii) the oncosuppressor p27Kip1, a validated miR-221 target is downregulated in aggressive cancer cell lines; and iii) the upregulation of a key transcription factor, Slug, appears to be crucial, since it binds to the miR-221/miR-222 promoter and is responsible for the high expression of the miR-221/miR-222 cluster in breast cancer cells. A Slug/miR-221 network has been suggested, linking miR-221 activity with the downregulation of a Slug repressor, leading to Slug/miR-221 upregulation and p27Kip1 downregulation. Interference with this process can be achieved using antisense miRNA (antagomiR) molecules targeting miR-221, inducing the downregulation of Slug and the upregulation of p27Kip1.

Journal ArticleDOI
TL;DR: An experimental model ofhuman hepatocarcinogenesis such as in vitro neoplastic transformation of human hepatocytes has not been successfully achieved yet, but several immortalized human hepatocyte cell lines have been established and will become useful tools for the elucidation of hepatocARCinogenesis.
Abstract: Hepatocellular carcinoma is the third most frequent cause of cancer-related death worldwide; and its incidence rate is increasing. Clinical and molecular medical analyses have revealed substantial information on hepatocarcinogenesis. Hepatocarcinogenesis is a stepwise process during which multiple genes are altered. Genetic changes and their biological consequences in human HCC can be divided into at least 4 groups: i) tumor suppressor genes (p53, retinoblastoma, phosphatase tensin homolog and runt-related transcription factor 3), ii) oncogenes (myc, K-ras, BRAF), iii) reactivation of developmental pathways (Wnt, hedgehog), and iv) growth factors and their receptors (transforming growth factor-α, insulin-like growth factor-2 receptor). An experimental model of human hepatocarcinogenesis such as in vitro neoplastic transformation of human hepatocytes has not been successfully achieved yet, but several immortalized human hepatocyte cell lines have been established. These immortalized human hepatocytes will become useful tools for the elucidation of hepatocarcinogenesis, especially for the initial step of multistep hepatocarcinogenesis.

Journal ArticleDOI
TL;DR: It is demonstrated that non-adherent spheroid body-forming cells from the gastric cancer cell line MKN-45 cultured in stem cell-conditioned medium possessed gastric CSC properties, such as persistent self-renewal, extensive proliferation, drug resistance, high tumorigenic capacity and overexpression of CSC-related genes and proteins compared with the parental cells.
Abstract: The cancer stem cell theory hypothesizes that cancer stem cells (CSCs), which possess self-renewal and other stem cell properties, are regarded as the cause of tumor formation, recurrence and metastasis. The isolation and identification of CSCs could help to develop novel therapeutic strategies specifically targeting CSCs. In this study, we enriched gastric cancer stem cells through spheroid body formation by cultivating the human gastric cancer cell line MKN-45 in defined serum-free medium. The stemness characteristics of spheroid body-forming cells, including self-renewal, proliferation, chemoresistance, tumorigenicity of the MKN-45 spheroid body-forming cells were evaluated, and the expression levels of stemness genes and related proteins in the MKN-45 spheroid body-forming cells were assessed. Furthermore, immunofluorescence staining for the stem cell markers on spheroid body-forming cells was examined to evaluate the association between stemness factors (Oct4, Sox2, Nanog) and the proposed CSC marker CD44. Our data demonstrated that non-adherent spheroid body-forming cells from the gastric cancer cell line MKN-45 cultured in stem cell-conditioned medium possessed gastric CSC properties, such as persistent self-renewal, extensive proliferation, drug resistance, high tumorigenic capacity and overexpression of CSC-related genes and proteins (Oct4, Sox2, Nanog and CD44), compared with the parental cells. More importantly, CD44-positive cells co-expressing the pluripotency genes Oct4, Sox2 and Nanog may represent gastric CSCs. Further experiments using more refined selection criteria such as a combination of two or multiple markers would be useful to specifically identify and purify CSCs.

Journal ArticleDOI
TL;DR: The results suggest that Cur-NPs triggered the intrinsic apoptotic pathway through regulating the function of multiple drug resistance protein 1 (MDR1) and the production of reactive oxygen species (ROS) in CAR cells and could be potentially efficacious in the treatment of cisplatin-resistant human oral cancer.
Abstract: Curcumin is a polyphenolic compound which possesses anticancer potential. It has been shown to induce cell death in a variety of cancer cells, however, its effect on CAL27‑cisplatin-resistant human oral cancer cells (CAR cells) has not been elucidated to date. The low water solubility of curcumin which leads to poor bioavailability, however, has been highlighted as a major limiting factor. In this study, we utilized water-soluble PLGA curcumin nanoparticles (Cur-NPs), and investigated the effects of Cur-NPs on CAR cells. The results showed Cur-NPs induced apoptosis in CAR cells but exhibited low cytotoxicity to normal human gingival fibroblasts (HGFs) and normal human oral keratinocytes (OKs). Cur-NPs triggered DNA concentration, fragmentation and subsequent apoptosis. Compared to untreated CAR cells, a more detectable amount of Calcein-AM accumulation was found inside the treated CAR cells. Cur-NPs suppressed the protein and mRNA expression levels of MDR1. Both the activity and the expression levels of caspase-3 and caspase-9 were elevated in the treated CAR cells. The Cur-NP-triggered apoptosis was blocked by specific inhibitors of pan-caspase (z-VAD-fmk), caspase-3 (z-DEVD-fmk), caspase-9 (z-LEHD-fmk) and antioxidant agent (N-acetylcysteine; NAC). Cur-NPs increased reactive oxygen species (ROS) production, upregulated the protein expression levels of cleaved caspase-3/caspase-9, cytochrome c, Apaf-1, AIF, Bax and downregulated the protein levels of Bcl-2. Our results suggest that Cur-NPs triggered the intrinsic apoptotic pathway through regulating the function of multiple drug resistance protein 1 (MDR1) and the production of reactive oxygen species (ROS) in CAR cells. Cur-NPs could be potentially efficacious in the treatment of cisplatin-resistant human oral cancer.

Journal ArticleDOI
TL;DR: The results show that two clusters of miR-23a~27a~24-2 and miR‑23b~27b~24‑1 regulate and promote glioma cell proliferation through MXI1 synergistically, and reveal, for the first time, the novel functions of cooperation of mi-24‑3p and mi-27a-3p from two clusters in promoting cell proliferation.
Abstract: MicroRNAs (miRNAs) are small, non‑coding RNAs which regulate gene expression at the post-transcriptional level. Abnormal expression of miRNAs occurs frequently in tumors. Although the two miRNAs miR‑24‑3p and miR‑27a‑3p come from two duplicated gene clusters of miR‑23a~27a~24‑2 and miR‑23b~27b~24‑1 which are found to be deregulated in a variety of cancers, the role of cooperation of the two clusters and the function of the two miRNAs in tumors have not been completely characterized. Here, we show that overexpression of miR‑24‑3p and miR‑27a‑3p could promote cell proliferation using the MTT assay. By integrated bioinformatic analysis and experimental confirmation, we identified MXI1, which has been found to act as a tumor suppressor gene by affecting c‑Myc, as a direct target of miR‑24‑3p and miR‑27a‑3p. While targeting the MXI1 3' untranslated region by miR‑24‑3p or miR‑27a‑3p, luciferase activity was attenuated. The two miRNAs promote glioma cell proliferation via targeting MXI1 and the experiment was confirmed by the rescue experiments. Furthermore, our results show that two clusters of miR-23a~27a~24-2 and miR‑23b~27b~24‑1 regulate MXI1 synergistically. These findings reveal, for the first time, the novel functions of cooperation of miR‑24‑3p and miR‑27a‑3p from two clusters in promoting cell proliferation through MXI1. Additionally, we observed that miR‑27a‑3p is upregulated in glioma tissues.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the antitumor effects of kaempferol on cell cycle arrest and autophagic cell death in SK-HEP-1 human hepatic cancer cells.
Abstract: Kaempferol belongs to the flavonoid family and has been used in traditional folk medicine. Here, we investigated the antitumor effects of kaempferol on cell cycle arrest and autophagic cell death in SK-HEP-1 human hepatic cancer cells. Kaempferol decreased cell viability as determined by MTT assays and induced a G2/M phase cell cycle arrest in a concentration-dependent manner. Kaempferol did not induce DNA fragmentation, apoptotic bodies or caspase-3 activity in SK-HEP-1 cells as determined by DNA gel electrophoresis, DAPI staining and caspase-3 activity assays, respectively. In contrast, kaempferol is involved in the autophagic process. Double-membrane vacuoles, lysosomal compartments, acidic vesicular organelles and cleavage of microtubule-associated protein 1 light chain 3 (LC3) were observed by transmission electron microscopy, LysoΤracker red staining, GFP-fluorescent LC3 assays and acridine orange staining, respectively. In SK-HEP-1 cells, kaempferol increased the protein levels of p-AMPK, LC3-II, Atg 5, Atg 7, Atg 12 and beclin 1 as well as inhibited the protein levels of CDK1, cyclin B, p-AKT and p-mTOR. Taken together, CDK1/cyclin B expression and the AMPK and AKT signaling pathways contributed to kaempferol-induced G2/M cell cycle arrest and autophagic cell death in SK-HEP-1 human hepatic cancer cells. These results suggest that kaempferol may be useful for long-term cancer prevention.

Journal ArticleDOI
TL;DR: To clarify the molecular mechanisms involved in the carcinogenesis of TNBC and to identify target molecules for novel anticancer drugs, gene expression profiles of 30 TNBCs as well as 13 normal epithelial ductal cells that were purified by laser-microbeam microdissection are analyzed.
Abstract: Triple negative breast cancer (TNBC) has a poor outcome due to the lack of beneficial therapeutic targets. To clarify the molecular mechanisms involved in the carcinogenesis of TNBC and to identify target molecules for novel anticancer drugs, we analyzed the gene expression profiles of 30 TNBCs as well as 13 normal epithelial ductal cells that were purified by laser-microbeam microdissection. We identified 301 and 321 transcripts that were significantly upregulated and downregulated in TNBC, respectively. In particular, gene expression profile analyses of normal human vital organs allowed us to identify 104 cancer-specific genes, including those involved in breast carcinogenesis such as NEK2, PBK and MELK. Moreover, gene annotation enrichment analysis revealed prominent gene subsets involved in the cell cycle, especially mitosis. Therefore, we focused on cell cycle regulators, asp (abnormal spindle) homolog, microcephaly-associated (Drosophila) (ASPM) and centromere protein K (CENPK) as novel therapeutic targets for TNBC. Small-interfering RNA-mediated knockdown of their expression significantly attenuated TNBC cell viability due to G1 and G2/M cell cycle arrest. Our data will provide a better understanding of the carcinogenesis of TNBC and could contribute to the development of molecular targets as a treatment for TNBC patients.

Journal ArticleDOI
TL;DR: Recognition of tumor-suppressive miRNA-regulated molecular targets provides new insights into the potential mechanisms of cervical SCC oncogenesis and metastasis and suggests novel therapeutic strategies for treatment of this disease.
Abstract: Our recent studies of microRNA (miRNA) expression signatures indicated that microRNA-29a (miR-29a) was significantly downregulated in several types of human cancers, suggesting that miR-29a may be a putative tumor-suppressive miRNA in human cancers. The aim of this study was to investigate the functional significance of miR-29a in cervical squamous cell carcinoma (SCC) and to identify novel miR-29a-regulated cancer pathways and target genes involved in cervical SCC oncogenesis and metastasis. Restoration of miR-29a in cervical cancer cell lines (CaSKi, HeLa, ME180 and Yumoto) revealed that this miRNA significantly inhibited cancer cell migration and invasion. Gene expression data and in silico analysis demonstrated that heat-shock protein 47 (HSP47), a member of the serpin superfamily of serine proteinase inhibitors and a molecular chaperone involved in the maturation of collagen molecules, was a potential target of miR-29a regulation. Luciferase reporter assays showed that miR-29a directly regulated HSP47. Moreover, silencing of the HSP47 gene significantly inhibited cell migration and invasion in cancer cells and the expression of HSP47 was upregulated in cancer tissues and cervical intraepithelial neoplasia (CIN), as demonstrated by immunostaining. Downregulation of miR-29a was a frequent event in cervical SCC and miR-29a acted as a tumor suppressor by directly targeting HSP47. Recognition of tumor-suppressive miRNA-regulated molecular targets provides new insights into the potential mechanisms of cervical SCC oncogenesis and metastasis and suggests novel therapeutic strategies for treatment of this disease.

Journal ArticleDOI
TL;DR: Consistent with its anti-apoptotic target BCL2, miR-205 promoted apoptosis in prostate cancer cells in response to DNA damage by cisplatin and doxorubicin in the prostate cancer cell lines PC3 and LnCap.
Abstract: . Decreased expression of the microRNA miR-205 has been observed in multiple tumour types due to its role in the epithelial to mesenchymal transition, which promotes metastasis. We determined the expression of miR-205 in 111 archival samples of prostate carcinoma and found it to be strongly reduced in most samples, with a median expression level of 16% in comparison to benign tissue from the same patient. Lower miR-205 expression correlated significantly with tumour size and miR-205 levels decreased with increasing Gleason score from 7a=3+4 to 8=4+4. In addition, we describe the anti-apoptotic protein BCL2 as a target of miR-205, rele-vant for prostate cancer due to its role in prognosis of primary tumours and in the appearance of androgen independence. The repression of BCL2 by miR-205 was confirmed using reporter assays and western blotting. BCL2 mRNA expression in the same collective of prostate cancer tissue samples was associ-ated with higher Gleason score and extracapsular extension of the tumour (pT3). Consistent with its anti-apoptotic target BCL2, miR-205 promoted apoptosis in prostate cancer cells in response to DNA damage by cisplatin and doxorubicin in the prostate cancer cell lines PC3 and LnCap. MiR-205 also inhibited proliferation in these cell lines.

Journal ArticleDOI
TL;DR: It can be concluded that ALDH generates chemoresistance in gastric cancer cells through Notch1 and Shh signaling, suggesting novel treatment targets.
Abstract: Cancer stem cells (CSCs) are known to influence chemoresistance, survival, relapse and metastasis. Aldehyde dehydrogenase (ALDH) functions as an epithelial CSC marker. In the present study, we investigated the involvement of ALDH in gastric CSC maintenance, chemoresistance and survival. Following screening for eight candidate markers (CD13, CD26, CD44, CD90, CD117, CD133, EpCAM and ALDH), five gastric cancer cell lines were found to contain small subpopulations of high ALDH activity (ALDH(high) cells). We also examined the involvement of ALDH(high) cell populations in human primary tumor samples. Immunodeficient NOD/SCID mice were inoculated with tumor tissues obtained from surgical specimens. ALDH(high) cells were found to persist in the xenotransplanted primary tumor samples. in the immunodeficient mice, ALDH(high) cells exhibited a greater sphere‑forming ability in vitro and tumorigenic potential in vivo, compared with subpopulations of low ALDH activity (ALDH(low) cells). Cell cultures treated with 5-fluoro-uracil and cisplatin exhibited higher numbers of ALDH(high) cells. Notch1 and Sonic hedgehog (Shh) expression was also found to increase in ALDH(high) cells compared with ALDH(low) cells. Therefore, it can be concluded that ALDH generates chemoresistance in gastric cancer cells through Notch1 and Shh signaling, suggesting novel treatment targets.

Journal ArticleDOI
TL;DR: A gain-of-function screen using miRNA mimic library to identify those affecting cell proliferation in human epithelial ovarian cancer cells (A2780) discovered a number of miRNAs that increased or decreased the cell viability of A2780 cells.
Abstract: MicroRNAs (miRNAs) are a small class of non‑coding RNAs that negatively regulate gene expression, and are considered as new therapeutic targets for treating cancer. In this study, we performed a gain-of-function screen using miRNA mimic library (319 miRNA species) to identify those affecting cell proliferation in human epithelial ovarian cancer cells (A2780). We discovered a number of miRNAs that increased or decreased the cell viability of A2780 cells. Pro-proliferative and anti-proliferative miRNAs include oncogenic miR-372 and miR-373, and tumor suppressive miR-124a, miR-7, miR-192 and miR-193a, respectively. We found that overexpression of miR-124a, miR-192, miR-193a and miR‑193b inhibited BrdU incorporation in A2780 cells, indicating that these miRNAs affected the cell cycle. Overexpression of miR‑193a and miR-193b induced an activation of caspase 3/7, and resulted in apoptotic cell death in A2780 cells. A genome‑wide gene expression analysis with miR-193a-transfected A2780 cells led to identification of ARHGAP19, CCND1, ERBB4, KRAS and MCL1 as potential miR-193a targets. We demonstrated that miR-193a decreased the amount of MCL1 protein by binding 3'UTR of its mRNA. Our study suggests the potential of miRNA screens to discover miRNAs as therapeutic tools to treat ovarian cancer.

Journal ArticleDOI
TL;DR: In silico analysis showed that miR-218 appeared to be an important modulator of tumor cell processes through suppression of many targets, particularly those involved in focal adhesion signaling pathways, and indicated that mi R-218 acts as a tumor suppressor in cervical SCC.
Abstract: Cervical cancer is one of the most common cancers in women. More than 275,100 women die from cervical cancer each year. Cervical squamous cell carcinoma (cervical SCC), one of the most frequent types of cervical cancers, is associated with high-risk human papilloma virus (HPV), although HPV infection alone may not be enough to induce malignant transformation. MicroRNAs (miRNAs), a class of small non-coding RNAs, regulate protein-coding gene expression by repressing translation or cleaving RNA transcripts in a sequence-specific manner. A growing body of evidence suggests that miRNAs contribute to cervical SCC progression, development and metastasis. miRNA expression signatures in SCC (hypopharyngeal SCC and esophageal SCC) revealed that miR-218 expression was significantly reduced in cancer tissues compared with adjacent non-cancerous epithelium, suggesting that miR-218 is a candidate tumor suppressor. The aim of this study was to investigate the functional significance of miR-218 in cervical SCC and to identify novel miR‑218-mediated cancer pathways in cervical SCC. Restoration of miR-218 significantly inhibited cancer cell migration and invasion in both HPV-positive and HPV-negative cervical SCC cell lines. These data indicated that miR-218 acts as a tumor suppressor in cervical SCC. Our in silico analysis showed that miR-218 appeared to be an important modulator of tumor cell processes through suppression of many targets, particularly those involved in focal adhesion signaling pathways. Gene expression data indicated that LAMB3, a laminin protein known to influence cell differentiation, migration, adhesion, proliferation and survival, was upregulated in cervical SCC clinical specimens, and silencing studies demonstrated that LAMB3 functioned as an oncogene in cervical SCC. The identification of novel tumor-suppressive miR-218-mediated molecular pathways has provided new insights into cervical SCC oncogenesis and metastasis.

Journal ArticleDOI
TL;DR: Radiation enhancement ratios of hyperthermia (HT), halogenated pyrimidines (HPs), various cytostatic drugs and poly(ADP-ribose) polymerase‑1 (PARP1) inhibitors expressed in the parameters α and β derived from cell survival curves of various mammalian cell cultures are reviewed to help optimize fractionation schedules in multimodality treatments.
Abstract: The linear-quadratic model (LQ model) provides a biologically plausible and experimentally established method to quantitatively describe the dose-response to irradiation in terms of clonogenic survival. In the basic LQ formula, the clonogenic surviving fraction Sd/S₀ following a radiation dose d (Gy) is described by an inverse exponential approximation: Sd/S₀ = e-(αd+βd²), wherein α and β are experimentally derived parameters for the linear and quadratic terms, respectively. Radiation is often combined with other agents to achieve radiosensitisation. In this study, we reviewed radiation enhancement ratios of hyperthermia (HT), halogenated pyrimidines (HPs), various cytostatic drugs and poly(ADP-ribose) polymerase‑1 (PARP1) inhibitors expressed in the parameters α and β derived from cell survival curves of various mammalian cell cultures. A significant change in the α/β ratio is of direct clinical interest for the selection of optimal fractionation schedules in radiation oncology, influencing the dose per fraction, dose fractionation and dose rate in combined treatments. The α/β ratio may increase by a mutually independent increase of α or decrease of β. The results demonstrated that the different agents increased the values of both α and β. However, depending on culture conditions, both parameters can also be separately influenced. Moreover, it appeared that radiosensitisation was more effective in radioresistant cell lines than in radiosensitive cell lines. Furthermore, radiosensitisation is also dependent on the cell cycle stage, such as the plateau or exponentially growing phase, as well as on post-treatment plating conditions. The LQ model provides a useful tool in the quantification of the effects of radiosensitising agents. These insights will help optimize fractionation schedules in multimodality treatments.

Journal ArticleDOI
TL;DR: It is shown that miR-21 regulates the expression of multiple target proteins that are associated with tumor dissemination and raises the possibility that therapy of HCC may be improved by pharmaceutical strategies directed towards mi R-21.
Abstract: Due to invasion and intrahepatic metastasis, the prognosis for patients with hepatocellular carcinoma (HCC) is poor. However, the mechanisms underlying these processes of HCC remain unclear. Cancer stem cells may be involved in early systemic dissemination and metastasis formation and side population (SP) cells isolated from diverse cancer cells possess stem cell-like properties. However, the mechanisms involved in migration and invasion of cancer stem cells are not well understood. In this study, we identified and isolated populations of SP cells from HCC cell lines using flow cyto-metry. SP cells showed higher levels of migration and invasion capability. Higher expression of miR-21 was observed in SP cells. Silencing of miR-21 led to a reduction in the migration and invasion of these cells and overexpression of miR-21 can increase in cell migration and invasion. Overexpression of miR-21 did not cause degradation of PTEN or RECK or PDCD4 mRNA but drastically inhibited its protein expression. Consistent with these results, silencing miR-21 increased the levels of PTEN, RECK and PDCD4 protein, respectively. The role of silencing miR-21 was partially attenuated by silencing of PTEN or RECK or PDCD4 mRNA. The results of this study revealed the aberrant expression of miR-21 in SP cells and showed that miR-21 regulates the expression of multiple target proteins that are associated with tumor dissemination. MiR-21 is a pro-metastatic miRNA in SP cells and raises the possibility that therapy of HCC may be improved by pharmaceutical strategies directed towards miR-21.

Journal ArticleDOI
TL;DR: Novel biomarkers for early cancer prediction, detection, prognostic evolution, and the response to treatment are critically assessed and addressed in this review of colorectal cancer.
Abstract: Colorectal cancer (CRC) is a common and often lethal tumor. Over the last 25 years, remarkable progress has been made in understanding its biological and molecular features and in elucidating the steps involved in colon carcinogenesis. This, in turn, has led to a more rational and effective clinical approach to the treatment of CRC. While colorectal adenoma is the most frequent precancerous lesion, other potentially premalignant conditions, including chronic inflammatory bowel diseases and hereditary syndromes, such as familial adenomatous polyposis, Peutz-Jeghers syndrome and juvenile polyposis, involve different sites of the gastrointestinal tract with an overall incidence of less than 5%. In all such cases, disease recognition at an early stage is essential to devise suitable preventive cancer strategies. These topics are addressed in this review, along with the most important epidemiological, pathogenetic and clinical features that lead to malignant transformation. Novel biomarkers for early cancer prediction, detection, prognostic evolution, and the response to treatment are critically assessed as well. Continued improvements in our knowledge of the molecular basis of CRC and the transfer of this information into daily clinical practice will reduce the burden of this disease.

Journal ArticleDOI
TL;DR: The results showed that Bmi-1 is upregulated in HCC tissues compared to matched non-cancer liver tissues; and its expression is positively associated with tumour size, metastasis, venous invasion and AJCC TNM stage, respectively; and multivariate analysis showed that high expression of BMI-1 was an independent prognostic factor for overall survival.
Abstract: Hepatocellular carcinoma (HCC) is one of the most common malignant tumours and it carries a poor prognosis due to a high rate of recurrence or metastasis after surgery. Bmi-1 plays a significant role in the growth and metastasis of many solid tumours. However, the exact mechanisms underlying Bmi-1-mediated cell invasion and metastasis, especially in HCC, are not yet known. In the present study, we sought to evaluate the expression of Bmi-1 in HCC samples and its relationship with clinicopathological characteristics and prognostic value, we also investigated related mechanisms underlying Bmi-1-mediated cell invasion in HCC. Our results showed that Bmi-1 is upregulated in HCC tissues compared to matched non-cancer liver tissues; and its expression is positively associated with tumour size, metastasis, venous invasion and AJCC TNM stage, respectively; multivariate analysis showed that high expression of Bmi-1 was an independent prognostic factor for overall survival. In addition, the shRNA-mediated inhibition of Bmi-1 reduced the invasiveness of two HCC cell lines in vitro by upregulating phosphatase and the tensin homolog deleted on chromosome 10 (PTEN) expression, inhibiting the phosphatidylinositol 3-kinase (PI3K)/Akt signalling pathway and downregulating the expression and activities of matrix metalloproteinase (MMP)-2 and MMP-9 and vascular endothelial growth factor (VEGF). These data demonstrate that Bmi-1 plays a vital role in HCC invasion and that Bmi-1 is a potential therapeutic target for HCC.

Journal ArticleDOI
TL;DR: Results suggested that downregulation of HOXD10 expression by miR-10b overexpression may induce an increase of pro-metastatic gene products, such as MMP14 and RHOC, and contribute to the acquisition of metastatic phenotypes in epithelial ovarian cancer cells.
Abstract: Small and large non-coding RNAs (ncRNAs) contribute to the acquisition of aggressive tumor behavior in diverse human malignancies. Two types of ncRNAs, miRNA‑10b (miR-10b) and homemobox (HOX) transcript antisense RNA (HOTAIR), can suppress the translation of the HOXD10 gene, an mRNA encoding a transcriptional repressor that inhibits the expression of cell migration/invasion-associated genes. Using epithelial ovarian cancer cell lines and primary tumors, we investigated whether miR‑10b and/or HOTAIR can regulate the expression of HOXD10, and whether it permits gain of pro‑metastatic gene products, matrix metallopeptidase 14 (MMP14) and ras homolog family member C (RHOC). Overexpression of miR-10b induced a decrease in HOXD10 protein expression, and upregulated the migration and invasion abilities in ovarian cancer cell lines (P<0.05). In these cells, a significant increase of MMP14 and RHOC protein was observed. No significant upregulation of the HOXD10 protein was observed in cells with the treatment of HOTAIR-siRNA. Positive signals for HOXD10 and MMP14 proteins were observed in 47 (69%) and 25 (37%) of 68 patients with epithelial ovarian cancers. An inverse correlation between HOXD10 and MMP14 immunoreactivities was observed (P<0.05), and miR-10b expression was also inversely correlated with HOXD10 protein expression (P<0.05). These results suggested that downregulation of HOXD10 expression by miR-10b overexpression may induce an increase of pro-metastatic gene products, such as MMP14 and RHOC, and contribute to the acquisition of metastatic phenotypes in epithelial ovarian cancer cells.

Journal ArticleDOI
TL;DR: STX-0119, an inhibitor of STAT3, may serve as a novel therapeutic compound against GBM-SCs even in temozolomide-resistant GBM patients and has the potential for G BM-SC-specific therapeutics in combination with temozlomide plus radiation therapy.
Abstract: Signal transducer and activator of transcription (STAT) 3, a member of a family of DNA-binding molecules, is a potential target in the treatment of cancer. The highly phosphorylated STAT3 in cancer cells contributes to numerous physiological and oncogenic signaling pathways. Furthermore, a significant association between STAT3 signaling and glioblastoma multiforme stem-like cell (GBM-SC) development and maintenance has been demonstrated in recent studies. Previously, we reported a novel small molecule inhibitor of STAT3 dimerization, STX-0119, as a cancer therapeutic. In the present study, we focused on cancer stem-like cells derived from recurrent GBM patients and investigated the efficacy of STX-0119. Three GBM stem cell lines showed many stem cell markers such as CD133, EGFR, Nanog, Olig2, nestin and Yamanaka factors (c-myc, KLF4, Oct3/4 and SOX2) compared with parental cell lines. These cell lines also formed tumors in vivo and had similar histological to surgically resected tumors. STAT3 phosphorylation was activated more in the GBM-SC lines than serum-derived GB cell lines. The growth inhibitory effect of STX-0119 on GBM-SCs was moderate (IC50 15-44 µM) and stronger compared to that of WP1066 in two cell lines. On the other hand, the effect of temozolomide was weak in all the cell lines (IC50 53-226 µM). Notably, STX-0119 demonstrated strong inhibition of the expression of STAT3 target genes (c-myc, survivin, cyclin D1, HIF-1α and VEGF) and stem cell-associated genes (CD44, Nanog, nestin and CD133) as well as the induction of apoptosis in one stem-like cell line. Interestingly, VEGFR2 mRNA was also remarkably inhibited by STX-0119. In a model using transplantable stem-like cell lines in vivo GB-SCC010 and 026, STX-0119 inhibited the growth of GBM-SCs at 80 mg/kg. STX-0119, an inhibitor of STAT3, may serve as a novel therapeutic compound against GBM-SCs even in temozolomide-resistant GBM patients and has the potential for GBM-SC-specific therapeutics in combination with temozolomide plus radiation therapy.

Journal ArticleDOI
TL;DR: Investigation of microRNA-200 regulation in lung cancer metastasis and consequent clinical outcome indicates that re-expression of miR-200 downregulates the authors' previously identified NSCLC prognostic biomarkers in metastatic NSCLc cells, and may provide a potential basis for innovative therapeutic approaches for the treatment of this deadly disease.
Abstract: Lung cancer remains the leading cause of cancer-related mortality for both men and women. Tumor recurrence and metastasis is the major cause of lung cancer treatment failure and death. The microRNA‑200 (miR-200) family is a powerful regulator of the epithelial-mesenchymal transition (EMT) process, which is essential in tumor metastasis. Nevertheless, miR-200 family target genes that promote metastasis in non-small cell lung cancer (NSCLC) remain largely unknown. Here, we sought to investigate whether the microRNA-200 family regulates our previously identified NSCLC prognostic marker genes associated with metastasis, as potential molecular targets. Novel miRNA targets were predicted using bioinformatics tools based on correlation analyses of miRNA and mRNA expression in 57 squamous cell lung cancer tumor samples. The predicted target genes were validated with quantitative RT-PCR assays and western blot analysis following re-expression of miR-200a, -200b and -200c in the metastatic NSCLC H1299 cell line. The results show that restoring miR-200a or miR-200c in H1299 cells induces downregulation of DLC1, ATRX and HFE. Reinforced miR-200b expression results in downregulation of DLC1, HNRNPA3 and HFE. Additionally, miR-200 family downregulates HNRNPR3, HFE and ATRX in BEAS-2B immortalized lung epithelial cells in quantitative RT-PCR and western blot assays. The miR-200 family and these potential targets are functionally involved in canonical pathways of immune response, molecular mechanisms of cancer, metastasis signaling, cell-cell communication, proliferation and DNA repair in Ingenuity pathway analysis (IPA). These results indicate that re-expression of miR-200 downregulates our previously identified NSCLC prognostic biomarkers in metastatic NSCLC cells. These results provide new insights into miR-200 regulation in lung cancer metastasis and consequent clinical outcome, and may provide a potential basis for innovative therapeutic approaches for the treatment of this deadly disease.

Journal ArticleDOI
TL;DR: The data suggest that mitochondrial uncoupling occurs in cancer cachexia and thus point to the mitochondria as a potential pharmaceutical target for the treatment of cachexia.
Abstract: Approximately half of all cancer patients present with cachexia, a condition in which disease-associated metabolic changes lead to a severe loss of skeletal muscle mass. Working toward an integrated and mechanistic view of cancer cachexia, we investigated the hypothesis that cancer promotes mitochondrial uncoupling in skeletal muscle. We subjected mice to in vivo phosphorous-31 nuclear magnetic resonance (31P NMR) spectroscopy and subjected murine skeletal muscle samples to gas chromatography/mass spectrometry (GC/MS). The mice used in both experiments were Lewis lung carcinoma models of cancer cachexia. A novel 'fragmented mass isotopomer' approach was used in our dynamic analysis of 13C mass isotopomer data. Our 31P NMR and GC/MS results indicated that the adenosine triphosphate (ATP) synthesis rate and tricarboxylic acid (TCA) cycle flux were reduced by 49% and 22%, respectively, in the cancer-bearing mice (p<0.008; t-test vs. controls). The ratio of ATP synthesis rate to the TCA cycle flux (an index of mitochondrial coupling) was reduced by 32% in the cancer-bearing mice (p=0.036; t-test vs. controls). Genomic analysis revealed aberrant expression levels for key regulatory genes and transmission electron microscopy (TEM) revealed ultrastructural abnormalities in the muscle fiber, consistent with the presence of abnormal, giant mitochondria. Taken together, these data suggest that mitochondrial uncoupling occurs in cancer cachexia and thus point to the mitochondria as a potential pharmaceutical target for the treatment of cachexia. These findings may prove relevant to elucidating the mechanisms underlying skeletal muscle wasting observed in other chronic diseases, as well as in aging.