scispace - formally typeset
Search or ask a question
JournalISSN: 2291-9694

JMIR medical informatics 

JMIR Publications
About: JMIR medical informatics is an academic journal published by JMIR Publications. The journal publishes majorly in the area(s): Medicine & Health care. It has an ISSN identifier of 2291-9694. It is also open access. Over the lifetime, 1179 publications have been published receiving 15726 citations. The journal is also known as: JMI & Journal of medical Internet research medical informatics.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: InSight, a machine learning classification system that uses multivariable combinations of easily obtained patient data, is an effective tool for predicting sepsis onset and performs well even with randomly missing data.
Abstract: Background: Sepsis is one of the leading causes of mortality in hospitalized patients. Despite this fact, a reliable means of predicting sepsis onset remains elusive. Early and accurate sepsis onset predictions could allow more aggressive and targeted therapy while maintaining antimicrobial stewardship. Existing detection methods suffer from low performance and often require time-consuming laboratory test results. Objective: To study and validate a sepsis prediction method, InSight, for the new Sepsis-3 definitions in retrospective data, make predictions using a minimal set of variables from within the electronic health record data, compare the performance of this approach with existing scoring systems, and investigate the effects of data sparsity on InSight performance. Methods: We apply InSight, a machine learning classification system that uses multivariable combinations of easily obtained patient data (vitals, peripheral capillary oxygen saturation, Glasgow Coma Score, and age), to predict sepsis using the retrospective Multiparameter Intelligent Monitoring in Intensive Care (MIMIC)-III dataset, restricted to intensive care unit (ICU) patients aged 15 years or more. Following the Sepsis-3 definitions of the sepsis syndrome, we compare the classification performance of InSight versus quick sequential organ failure assessment (qSOFA), modified early warning score (MEWS), systemic inflammatory response syndrome (SIRS), simplified acute physiology score (SAPS) II, and sequential organ failure assessment (SOFA) to determine whether or not patients will become septic at a fixed period of time before onset. We also test the robustness of the InSight system to random deletion of individual input observations. Results: In a test dataset with 11.3% sepsis prevalence, InSight produced superior classification performance compared with the alternative scores as measured by area under the receiver operating characteristic curves (AUROC) and area under precision-recall curves (APR). In detection of sepsis onset, InSight attains AUROC = 0.880 (SD 0.006) at onset time and APR = 0.595 (SD 0.016), both of which are superior to the performance attained by SIRS (AUROC: 0.609; APR: 0.160), qSOFA (AUROC: 0.772; APR: 0.277), and MEWS (AUROC: 0.803; APR: 0.327) computed concurrently, as well as SAPS II (AUROC: 0.700; APR: 0.225) and SOFA (AUROC: 0.725; APR: 0.284) computed at admission (P<.001 for all comparisons). Similar results are observed for 1-4 hours preceding sepsis onset. In experiments where approximately 60% of input data are deleted at random, InSight attains an AUROC of 0.781 (SD 0.013) and APR of 0.401 (SD 0.015) at sepsis onset time. Even with 60% of data missing, InSight remains superior to the corresponding SIRS scores (AUROC and APR, P<.001), qSOFA scores (P=.0095; P<.001) and superior to SOFA and SAPS II computed at admission (AUROC and APR, P<.001), where all of these comparison scores (except InSight) are computed without data deletion. Conclusions: Despite using little more than vitals, InSight is an effective tool for predicting sepsis onset and performs well even with randomly missing data. [JMIR Med Inform 2016;4(3):e28]

347 citations

Journal ArticleDOI
TL;DR: This study introduces the beta versions of I CD-10 and ICD-10-CM to phecode maps that enable researchers to leverage accumulated ICD/ICD/PheWAS data for PhewAS in the EHR by investigating phenotype reproducibility and conducting a PheW AS.
Abstract: Background: The phecode system was built upon the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) for phenome-wide association studies (PheWAS) using the electronic health record (EHR). Objective: The goal of this paper was to develop and perform an initial evaluation of maps from the International Classification of Diseases, 10th Revision (ICD-10) and the International Classification of Diseases, 10th Revision, Clinical Modification (ICD-10-CM) codes to phecodes. Methods: We mapped ICD-10 and ICD-10-CM codes to phecodes using a number of methods and resources, such as concept relationships and explicit mappings from the Centers for Medicare & Medicaid Services, the Unified Medical Language System, Observational Health Data Sciences and Informatics, Systematized Nomenclature of Medicine-Clinical Terms, and the National Library of Medicine. We assessed the coverage of the maps in two databases: Vanderbilt University Medical Center (VUMC) using ICD-10-CM and the UK Biobank (UKBB) using ICD-10. We assessed the fidelity of the ICD-10-CM map in comparison to the gold-standard ICD-9-CM phecode map by investigating phenotype reproducibility and conducting a PheWAS. Results: We mapped >75% of ICD-10 and ICD-10-CM codes to phecodes. Of the unique codes observed in the UKBB (ICD-10) and VUMC (ICD-10-CM) cohorts, >90% were mapped to phecodes. We observed 70-75% reproducibility for chronic diseases and <10% for an acute disease for phenotypes sourced from the ICD-10-CM phecode map. Using the ICD-9-CM and ICD-10-CM maps, we conducted a PheWAS with a Lipoprotein(a) genetic variant, rs10455872, which replicated two known genotype-phenotype associations with similar effect sizes: coronary atherosclerosis (ICD-9-CM: P<.001; odds ratio (OR) 1.60 [95% CI 1.43-1.80] vs ICD-10-CM: P<.001; OR 1.60 [95% CI 1.43-1.80]) and chronic ischemic heart disease (ICD-9-CM: P<.001; OR 1.56 [95% CI 1.35-1.79] vs ICD-10-CM: P<.001; OR 1.47 [95% CI 1.22-1.77]). Conclusions: This study introduces the beta versions of ICD-10 and ICD-10-CM to phecode maps that enable researchers to leverage accumulated ICD-10 and ICD-10-CM data for PheWAS in the EHR.

268 citations

Journal ArticleDOI
TL;DR: The challenges faced by big data analytics and the opportunities that big data opens in health care are summarized to highlight the potential for positive impact and global implications.
Abstract: Background: Big data analytics offers promise in many business sectors, and health care is looking at big data to provide answers to many age-related issues, particularly dementia and chronic disease management. Objective: The purpose of this review was to summarize the challenges faced by big data analytics and the opportunities that big data opens in health care. Methods: A total of 3 searches were performed for publications between January 1, 2010 and January 1, 2016 (PubMed/MEDLINE, CINAHL, and Google Scholar), and an assessment was made on content germane to big data in health care. From the results of the searches in research databases and Google Scholar (N=28), the authors summarized content and identified 9 and 14 themes under the categories Challenges and Opportunities, respectively. We rank-ordered and analyzed the themes based on the frequency of occurrence. Results: The top challenges were issues of data structure, security, data standardization, storage and transfers, and managerial skills such as data governance. The top opportunities revealed were quality improvement, population management and health, early detection of disease, data quality, structure, and accessibility, improved decision making, and cost reduction. Conclusions: Big data analytics has the potential for positive impact and global implications; however, it must overcome some legitimate obstacles. [JMIR Med Inform 2016;4(4):e38]

240 citations

Journal ArticleDOI
TL;DR: A comprehensive overview of the development and uptake of NLP methods applied to free-text clinical notes related to chronic diseases is provided, including the investigation of challenges faced by NLP methodologies in understanding clinical narratives.
Abstract: Background: Novel approaches that complement and go beyond evidence-based medicine are required in the domain of chronic diseases, given the growing incidence of such conditions on the worldwide population. A promising avenue is the secondary use of electronic health records (EHRs), where patient data are analyzed to conduct clinical and translational research. Methods based on machine learning to process EHRs are resulting in improved understanding of patient clinical trajectories and chronic disease risk prediction, creating a unique opportunity to derive previously unknown clinical insights. However, a wealth of clinical histories remains locked behind clinical narratives in free-form text. Consequently, unlocking the full potential of EHR data is contingent on the development of natural language processing (NLP) methods to automatically transform clinical text into structured clinical data that can guide clinical decisions and potentially delay or prevent disease onset. Objective: The goal of the research was to provide a comprehensive overview of the development and uptake of NLP methods applied to free-text clinical notes related to chronic diseases, including the investigation of challenges faced by NLP methodologies in understanding clinical narratives. Methods: Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed and searches were conducted in 5 databases using “clinical notes,” “natural language processing,” and “chronic disease” and their variations as keywords to maximize coverage of the articles. Results: Of the 2652 articles considered, 106 met the inclusion criteria. Review of the included papers resulted in identification of 43 chronic diseases, which were then further classified into 10 disease categories using the International Classification of Diseases, 10th Revision. The majority of studies focused on diseases of the circulatory system (n=38) while endocrine and metabolic diseases were fewest (n=14). This was due to the structure of clinical records related to metabolic diseases, which typically contain much more structured data, compared with medical records for diseases of the circulatory system, which focus more on unstructured data and consequently have seen a stronger focus of NLP. The review has shown that there is a significant increase in the use of machine learning methods compared to rule-based approaches; however, deep learning methods remain emergent (n=3). Consequently, the majority of works focus on classification of disease phenotype with only a handful of papers addressing extraction of comorbidities from the free text or integration of clinical notes with structured data. There is a notable use of relatively simple methods, such as shallow classifiers (or combination with rule-based methods), due to the interpretability of predictions, which still represents a significant issue for more complex methods. Finally, scarcity of publicly available data may also have contributed to insufficient development of more advanced methods, such as extraction of word embeddings from clinical notes. Conclusions: Efforts are still required to improve (1) progression of clinical NLP methods from extraction toward understanding; (2) recognition of relations among entities rather than entities in isolation; (3) temporal extraction to understand past, current, and future clinical events; (4) exploitation of alternative sources of clinical knowledge; and (5) availability of large-scale, de-identified clinical corpora.

225 citations

Journal ArticleDOI
TL;DR: The first homomorphically encrypted logistic regression outsourcing model is presented based on the critical observation that the precision loss of classification models is sufficiently small so that the decision plan stays still, to provide a practical support to the mainstream learning models.
Abstract: Background: Learning a model without accessing raw data has been an intriguing idea to security and machine learning researchers for years. In an ideal setting, we want to encrypt sensitive data to store them on a commercial cloud and run certain analyses without ever decrypting the data to preserve privacy. Homomorphic encryption technique is a promising candidate for secure data outsourcing, but it is a very challenging task to support real-world machine learning tasks. Existing frameworks can only handle simplified cases with low-degree polynomials such as linear means classifier and linear discriminative analysis. Objective: The goal of this study is to provide a practical support to the mainstream learning models (eg, logistic regression). Methods: We adapted a novel homomorphic encryption scheme optimized for real numbers computation. We devised (1) the least squares approximation of the logistic function for accuracy and efficiency (ie, reduce computation cost) and (2) new packing and parallelization techniques. Results: Using real-world datasets, we evaluated the performance of our model and demonstrated its feasibility in speed and memory consumption. For example, it took approximately 116 minutes to obtain the training model from the homomorphically encrypted Edinburgh dataset. In addition, it gives fairly accurate predictions on the testing dataset. Conclusions: We present the first homomorphically encrypted logistic regression outsourcing model based on the critical observation that the precision loss of classification models is sufficiently small so that the decision plan stays still. [JMIR Med Inform 2018;6(2):e19]

189 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202338
2022249
2021278
2020307
2019112
201878