scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Agricultural and Food Chemistry in 2003"


Journal ArticleDOI
TL;DR: The high content of phenolic compounds, antioxidant activity, and antiproliferative activity of apple peels indicate that they may impart health benefits when consumed and should be regarded as a valuable source of antioxidants.
Abstract: Consumption of fruits and vegetables has been shown to be effective in the prevention of chronic diseases. These benefits are often attributed to the high antioxidant content of some plant foods. Apples are commonly eaten and are large contributors of phenolic compounds in European and North American diets. The peels of apples, in particular, are high in phenolics. During applesauce and canned apple manufacture, the antioxidant-rich peels of apples are discarded. To determine if a useful source of antioxidants is being wasted, the phytochemical content, antioxidant activity, and antiproliferative activity of the peels of four varieties of apples (Rome Beauty, Idared, Cortland, and Golden Delicious) commonly used in applesauce production in New York state were investigated. The values of the peels were compared to those of the flesh and flesh + peel components of the apples. Within each variety, the total phenolic and flavonoid contents were highest in the peels, followed by the flesh + peel and the flesh....

1,590 citations


Journal ArticleDOI
TL;DR: In this paper, water, aqueous methanol, and ethanol extracts of freeze-dried leaves of Moringa oleifera Lam. from different agroclimatic regions were examined for radical scavenging capacities and antioxidant activities.
Abstract: Water, aqueous methanol, and aqueous ethanol extracts of freeze-dried leaves of Moringa oleifera Lam. from different agroclimatic regions were examined for radical scavenging capacities and antioxidant activities. All leaf extracts were capable of scavenging peroxyl and superoxyl radicals. Similar scavenging activities for different solvent extracts of each collection were found for the stable 1,1-diphenyl 2-picrylhydrazyl (DPPH•) radical. Among the three different moringa samples, both methanol and ethanol extracts of Indian origins showed the highest antioxidant activities, 65.1 and 66.8%, respectively, in the β-carotene−linoleic acid system. Nonetheless, increasing concentration of all the extracts had significantly (P < 0.05) increased reducing power, which may in part be responsible for their antioxidant activity. The major bioactive compounds of phenolics were found to be flavonoid groups such as quercetin and kaempferol. On the basis of the results obtained, moringa leaves are found to be a potenti...

1,358 citations


Journal ArticleDOI
TL;DR: These methods provide, for the first time, the ability to obtain a measure of "total antioxidant capacity" in the protein free plasma, using the same peroxyl radical generator for both lipophilic and hydrophilic antioxidants.
Abstract: Methods are described for the extraction and analysis of hydrophilic and lipophilic antioxidants, using modifications of the oxygen radical absorbing capacity (ORAC(FL)) procedure. These methods provide, for the first time, the ability to obtain a measure of "total antioxidant capacity" in the protein free plasma, using the same peroxyl radical generator for both lipophilic and hydrophilic antioxidants. Separation of the lipophilic and hydrophilic antioxidant fractions from plasma was accomplished by extracting with hexane after adding water and ethanol to the plasma (hexane/plasma/ethanol/water, 4:1:2:1, v/v). Lipophilic and hydrophilic antioxidants were efficiently partitioned between hexane and aqueous solvents. Conditions for controlling temperature effects and decreasing assay variability using fluorescein as the fluorescent probe were validated in different laboratories. Incubation (37 degrees C for at least 30 min) of the buffer to which AAPH was dissolved was critical in decreasing assay variability. Lipophilic antioxidants represented 33.1 +/- 1.5 and 38.2 +/- 1.9% of the total antioxidant capacity of the protein free plasma in two independent studies of 6 and 10 subjects, respectively. Methods are described for application of the assay techniques to other types of biological and food samples.

1,358 citations


Journal ArticleDOI
TL;DR: The masses and MS fragmentation patterns of phenolic acids are discussed and tabulated as are the UV absorption maxima.
Abstract: Phenolic acids are aromatic secondary plant metabolites, widely spread throughout the plant kingdom. Existing analytical methods for phenolic acids originated from interest in their biological roles as secondary metabolites and from their roles in food quality and their organoleptic properties. Recent interest in phenolic acids stems from their potential protective role, through ingestion of fruits and vegetables, against oxidative damage diseases (coronary heart disease, stroke, and cancers). High performance liquid chromatography (HPLC) as well as gas chromatography (GC) are the two separation techniques reviewed. Extraction from plant matrixes and cleavage reactions through hydrolysis (acidic, basic, and enzymatic) are discussed as are the derivatization reagents used in sample preparation for GC. Detection systems discussed include UV-Vis spectroscopy, mass spectrometry, electrochemical, and fluorometric detection. The most common tandem techniques are HPLC/UV and GC/MS, yet LC/MS is becoming more common. The masses and MS fragmentation patterns of phenolic acids are discussed and tabulated as are the UV absorption maxima.

1,236 citations


Journal ArticleDOI
TL;DR: The fragmentation behavior of 18 chlorogenic acids that are not substituted at position 1 has been investigated using LC-MS(4) applied to a methanolic coffee bean extract and commercial cider and these assignments are internally consistent and consistent with the limited data previously available.
Abstract: The fragmentation behavior of 18 chlorogenic acids that are not substituted at position 1 has been investigated using LC-MS(4) applied to a methanolic coffee bean extract and commercial cider (hard cider). Using LC-MS(3), it is possible to discriminate between each of the three isomers of p-coumaroylquinic acid, caffeoylquinic acid, feruloylquinic acid, and dicaffeoylquinic acid, and a hierarchical key has been prepared to facilitate this process when standards are not available. MS(4) fragmentations further support these assignments, but were not essential in reaching them. The distinctive behavior of 4-acyl and 3-acyl chlorogenic acids compared with the 5-acyl chlorogenic acids is a key factor permitting these assignments. The fragmentation patterns are dependent upon the particular stereochemical relationships between the individual substituents on the quinic acid moiety. Fragmentation is facilitated by 1,2-acyl participation and proceeds through quinic acid conformers in which the relevant substituents transiently adopt a 1,3-syn-diaxial relationship. Selected ion monitoring at m/z 529 clearly indicated the presence in coffee of six caffeoylferuloylquinic acid isomers, whereas previously only two or three had been demonstrated. The hierarchical key permitted specific structures to be assigned to each of the six isomers. These assignments are internally consistent and consistent with the limited data previously available.

1,112 citations


Journal ArticleDOI
TL;DR: The potential of exposure to acrylamide has been extensively studied in cells, tissues, animals, and humans as mentioned in this paper, and the effects of exposure in humans have been extensively investigated.
Abstract: Acrylamide (CH2CHCONH2), an industrially produced α,β-unsaturated (conjugated) reactive molecule, is used worldwide to synthesize polyacrylamide. Polyacrylamide has found numerous applications as a soil conditioner, in wastewater treatment, in the cosmetic, paper, and textile industries, and in the laboratory as a solid support for the separation of proteins by electrophoresis. Because of the potential of exposure to acrylamide, effects of acrylamide in cells, tissues, animals, and humans have been extensively studied. Reports that acrylamide is present in foods formed during their processing under conditions that also induce the formation of Maillard browning products heightened interest in the chemistry, biochemistry, and safety of this vinyl compound. Because exposure of humans to acrylamide can come from both external sources and the diet, a need exists to develop a better understanding of its formation and distribution in food and its role in human health. To contribute to this effort, this integrate...

1,057 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigated the impact of various agricultural practices on levels of secondary plant metabolites, and found that higher levels of TPs were consistently found in organically and sustainably grown foods as compared to those produced by conventional agricultural practices.
Abstract: Secondary phenolic metabolites play an important role in plant defense mechanisms, and increasing evidence indicates that many are important in human health. To date, few studies have investigated the impact of various agricultural practices on levels of secondary plant metabolites. To address this issue, the total phenolic (TP) content of marionberries, strawberries, and corn grown by sustainable, organic, or conventional cultural practices were measured. Additionally, the effects of three common postharvest processing treatments (freezing, freeze-drying, and air-drying) on the TP content of these agricultural products were also investigated. Statistically higher levels of TPs were consistently found in organically and sustainably grown foods as compared to those produced by conventional agricultural practices. In all samples, freeze-drying preserved higher levels of TPs in comparison with air-drying.

945 citations


Journal ArticleDOI
TL;DR: Phenolics such as quercetin and cyanidin had highly effective radical scavenging structures in blueberries, cranberry, chokeberry, and lingonberries, and Phenolic acids such as caffeic acid showed high antioxidant activity, probably due to its dihydroxylation in the 3-4 positions as hydrogen donors.
Abstract: The antioxidant activity of phenolics in fruits of blueberry (Vaccinium corymbosum cv. Sierra), cranberry (Vaccinium macrocarpon cv. Ben Lear), wild chokeberry (Aronia melanocarpa), and lingonberry (Vaccinium vitis-idaea cv. Amberland) was determined in this study. The phenolic constituents and contents among the different berries varied considerably. Anthocyanins were found to be the main components in all these berries. Chlorogenic acid in blueberry, quercetin glycosides in cranberry and lingonberry, and caffeic acid and its derivative in chokeberry were also present in relatively high concentrations. Chlorogenic acid, peonidin 3-galactoside, cyanidin 3-galactoside, and cyanidin 3-galactoside were the most important antioxidants in blueberry, cranberry, wild chokeberry, and lingonberry, respectively. The contribution of individual phenolics to the total antioxidant capacity was generally dependent on their structure and content in the berries. Phenolics such as quercetin and cyanidin, with 3',4'-dihydroxy substituents in the B ring and conjugation between the A and B rings, had highly effective radical scavenging structures in blueberries, cranberries, chokeberries, and lingonberries. Phenolic acids such as caffeic acid also showed high antioxidant activity, probably due to its dihydroxylation in the 3,4 positions as hydrogen donors.

801 citations


Journal ArticleDOI
TL;DR: Most anthocyanidins and their aglycons acted as strong antioxidants in emulsion and LDL and many compounds showed an activity comparable to the well-known antioxidants alpha-tocopherol, Trolox, catechin, and quercetin.
Abstract: The antioxidant activity of the six common anthocyanidins, pelargonidin, cyanidin, delphinidin, peonidin, petunidin, and malvidin, and their glycosidic forms was evaluated in three lipid-containing models [human low-density lipoprotein (LDL) and bulk and emulsified methyl linoleate]. In addition, the radical scavenging activity of the compounds against the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical was studied. Most anthocyanins and their aglycons acted as strong antioxidants in emulsion and LDL. Many compounds showed an activity comparable to the well-known antioxidants α-tocopherol, Trolox, catechin, and quercetin. In bulk methyl linoleate, anthocyanins and anthocyanidins possessed only a weak antioxidant activity or even oxidation-promoting activity. Depending on the anthocyanidin, different glycosylation patterns either enhanced or diminished the antioxidant power. For the most part, the activities of the glycosides and the aglycons did not differ remarkably in emulsion. In LDL the aglycons showed i...

799 citations


Journal ArticleDOI
TL;DR: The ABTS and DPPH methods were demonstrated to have similar predictive power as ORAC on sorghum antioxidant activity and there is a need to standardize these methods to allow for data comparisons across laboratories.
Abstract: Specialty sorghums, their brans, and baked and extruded products were analyzed for antioxidant activity using three methods: oxygen radical absorbance capacity (ORAC), 2,2‘-azinobis (3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS), and 2,2-diphenyl-1-picrylhydrazyl (DPPH). All sorghum samples were also analyzed for phenolic contents. Both ABTS and DPPH correlated highly with ORAC (R2 = 0.99 and 0.97, respectively, n = 18). Phenol contents of the sorghums correlated highly with their antioxidant activity measured by the three methods (R2 ≥ 0.96). The ABTS and DPPH methods, which are more cost effective and simpler, were demonstrated to have similar predictive power as ORAC on sorghum antioxidant activity. There is a need to standardize these methods to allow for data comparisons across laboratories. Keywords: Sorghum; antioxidant; phenols; ORAC; ABTS; DPPH

797 citations


Journal ArticleDOI
TL;DR: This work presents a mechanism for the formation of acrylamide from the reaction of the amino acid asparagine and a carbonyl-containing compound at typical cooking temperatures and confirms the presence of key reaction intermediates.
Abstract: Recent findings of a potential human carcinogen, acrylamide, in foods have focused research on the possible mechanisms of formation. We present a mechanism for the formation of acrylamide from the reaction of the amino acid asparagine and a carbonyl-containing compound at typical cooking temperatures. The mechanism involves formation of a Schiff base followed by decarboxylation and elimination of either ammonia or a substituted imine under heat to yield acrylamide. Isotope substitution studies and mass spectrometric analysis of heated model systems confirm the presence of key reaction intermediates. Further confirmation of this mechanism is accomplished through selective removal of asparagine with asparaginase that results in a reduced level of acrylamide in a selected heated food.

Journal ArticleDOI
TL;DR: A study on the importance of tyrosinase, especially that derived from mushroom, and describes its biochemical character and inhibition and activation by the various chemicals obtained from natural and synthetic origins with its clinical and industrial importance in the recent prospects.
Abstract: Tyrosinase, also known as polyphenol oxidase, is a copper-containing enzyme, which is widely distributed in microorganisms, animals, and plants. Nowadays mushroom tyrosinase has become popular because it is readily available and useful in a number of applications. This work presents a study on the importance of tyrosinase, especially that derived from mushroom, and describes its biochemical character and inhibition and activation by the various chemicals obtained from natural and synthetic origins with its clinical and industrial importance in the recent prospects.

Journal ArticleDOI
Dae-Ok Kim1, Ock K. Chun1, Young Jun Kim1, Hae Yeon Moon1, Chang Yong Lee1 
TL;DR: A positive relationship (correlation coefficient r (2)() = 0.977) was presented between total phenolics and VCEAC, suggesting polyphenolics would play an important role in free radical scavenging, and Beltsville Elite B70197 showed the highest amounts of total phenolic and total flavonoids and the highest VCEac.
Abstract: Total phenolics, total flavonoids, and antioxidant capacity of 11 cultivars of fresh plums were determined using spectrophotometric methods. Identification and quantification of individual polyphenolics were performed using reversed-phase high-performance liquid chromatography equipped with a diode array detector. The total phenolic contents of various cultivars widely varied from 125.0 to 372.6 mg/100 g expressed as gallic acid equivalents. The level of total flavonoids in fresh plums ranged between 64.8 and 257.5 mg/100 g expressed as catechin equivalents. Antioxidant capacity, expressed as vitamin C equivalent antioxidant capacity (VCEAC), ranged from 204.9 to 567.0 mg/100 g with an average of 290.9 mg/100 g of fresh weight. Cv. Beltsville Elite B70197 showed the highest amounts of total phenolics and total flavonoids and the highest VCEAC. A positive relationship (correlation coefficient r (2)() = 0.977) was presented between total phenolics and VCEAC, suggesting polyphenolics would play an important role in free radical scavenging. The level of IC(50) value of superoxide radical anion scavenging activity of the plum cultivars ranged from 13.4 to 45.7 mg of VCEAC/100 g. Neochlorogenic acid was the predominant polyphenolic among fresh plums tested. Flavonols found in plum were commonly quercetin derivatives. Rutin was the most predominant flavonol in plums. Various anthocyanins containing cyanidin aglycon and peonidin aglycon were commonly found in all plums except for cv. Mirabellier and NY 101.

Journal ArticleDOI
TL;DR: Cocoa exhibited the highest antioxidant activity among the samples in ABTS and DPPH assays, with VCEACs of 1128 and 836 mg/serving, respectively, suggesting that cocoa is more beneficial to health than teas and red wine in terms of its higher antioxidant capacity.
Abstract: Black tea, green tea, red wine, and cocoa are high in phenolic phytochemicals, among which theaflavin, epigallocatechin gallate, resveratrol, and procyanidin, respectively, have been extensively investigated due to their possible role as chemopreventive agents based on their antioxidant capacities. The present study compared the phenolic and flavonoid contents and total antioxidant capacities of cocoa, black tea, green tea, and red wine. Cocoa contained much higher levels of total phenolics (611 mg of gallic acid equivalents, GAE) and flavonoids (564 mg of epicatechin equivalents, ECE) per serving than black tea (124 mg of GAE and 34 mg of ECE, respectively), green tea (165 mg of GAE and 47 mg of ECE), and red wine (340 mg of GAE and 163 mg of ECE). Total antioxidant activities were measured using the 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assays and are expressed as vitamin C equivalent antioxidant capacities (VCEACs). Cocoa exhibited the highest antioxidant activity among the samples in ABTS and DPPH assays, with VCEACs of 1128 and 836 mg/serving, respectively. The relative total antioxidant capacities of the samples in both assays were as follows in decreasing order: cocoa > red wine > green tea > black tea. The total antioxidant capacities from ABTS and DPPH assays were highly correlated with phenolic content (r2 = 0.981 and 0.967, respectively) and flavonoid content (r2 = 0.949 and 0.915). These results suggest that cocoa is more beneficial to health than teas and red wine in terms of its higher antioxidant capacity.

Journal ArticleDOI
TL;DR: Antioxidant peptides in the acidic fraction were isolated by high-performance liquid chromatography on an ODS column and shown to possess the structures DSGVT, IEAEGE, DAQEKLE, EELDNALN, and VPSIDDQEELM.
Abstract: Hydrolysates obtained from porcine myofibrillar proteins by protease treatment (papain or actinase E) exhibited high antioxidant activity in a linolenic acid peroxidation system induced by Fe(2+). Hydrolysates produced by both papain and actinase E showed higher activities at pH 7.1 than at pH 5.4. The antioxidant activity of the papain hydrolysate was almost the same as that of vitamin E at pH 7.0. These hydrolysates possessed 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity and chelating activity toward metal ions. Antioxidant peptides were separated from the papain hydrolysate by ion exchange chromatography. The acidic fraction obtained by this method exhibited higher activity than the neutral or basic fractions. Antioxidant peptides in the acidic fraction were isolated by high-performance liquid chromatography on an ODS column and shown to possess the structures DSGVT, IEAEGE, DAQEKLE, EELDNALN, and VPSIDDQEELM. The DAQEKLE peptide showed the highest activity among these peptides.

Journal ArticleDOI
TL;DR: It appeared that the level of activity identified was strongly associated with the phenolic content, with the M. x piperita "Frantsila" extract being better than the other extracts, except for ferrous iron chelation.
Abstract: Water-soluble extracts from the Mentha species M. aquatica L. and M. haplocalyx Briq., the hybrids M. x dalmatica L. and M. x verticillata L., the varieties M. arvensis var. japanensis [M. arvensis L. var. piperascens Holmes ex Christ] and M. spicata L. var. crispa Benth, and M. x piperita L. "Frantsila", M. "Morocco", and M. "Native Wilmet" cultivars were screened for potential antioxidative properties. These properties included iron(III) reduction, iron(II) chelation, 1,1-diphenyl-2-picrylhydrazyl radical scavenging, and the ability to inhibit iron(III)-ascorbate-catalyzed hydroxyl radical-mediated brain phospholipid peroxidation. Total phenol content and qualitative and quantitative compositional analyses of each extract were also made. The extracts demonstrated varying degrees of efficacy in each assay, with the M. x piperita "Frantsila" extract being better than the other extracts, except for ferrous iron chelation. With the exception of iron chelation, it appeared that the level of activity identified was strongly associated with the phenolic content.

Journal ArticleDOI
TL;DR: Acrylamide in food products-chiefly in commercially available potato chips, potato fries, cereals, and bread-was determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and asparagine was found to be the main precursor of acrylamides.
Abstract: Acrylamide in food products-chiefly in commercially available potato chips, potato fries, cereals, and bread-was determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Samples were homogenized with water/dichloromethane, centrifuged, and filtered through a 5 kDa filter. The filtrate was cleaned up on mixed mode, anion and cation exchange (Oasis MAX and MCX) and carbon (Envirocarb) cartridges. Analysis was done by isotope dilution ([D(3)]- or [(13)C(3)]acrylamide) electrospray LC-MS/MS using a 2 x 150 mm (or 2 x 100 mm) Thermo HyperCarb column eluted with 1 mM ammonium formate in 15% (or 10% for the 2 x 100 mm column) methanol. Thirty samples of foods were analyzed. Concentrations of acrylamide varied from 14 ng/g (bread) to 3700 ng/g (potato chips). Acrylamide was formed during model reactions involving heating of mixtures of amino acids and glucose in ratios similar to those found in potatoes. In model reactions between amino acids and glucose, asparagine was found to be the main precursor of acrylamide. Thus, in the reaction between nitrogen-15 (amido)-labeled asparagine and glucose, corresponding (15)N-labeled acrylamide was formed. The yield of the model reaction is approximately 0.1%.

Journal ArticleDOI
TL;DR: A method for simultaneously determining all the polyphenols in foodstuffs, using HPLC and a photodiode array to construct a library comprising retention times, spectra of aglycons, and respective calibration curves for 100 standard chemicals is developed.
Abstract: Polyphenols, which have beneficial effects on health and occur ubiquitously in plant foods, are extremely diverse. We developed a method for simultaneously determining all the polyphenols in foodstuffs, using HPLC and a photodiode array to construct a library comprising retention times, spectra of aglycons, and respective calibration curves for 100 standard chemicals. The food was homogenized in liquid nitrogen, lyophilized, extracted with 90% methanol, and subjected to HPLC without hydrolysis. The recovery was 68-92%, and the variation in reproducibility ranged between 1 and 9%. The HPLC eluted polyphenols with good resolution within 95 min in the following order: simple polyphenols, catechins, anthocyanins, glycosides of flavones, flavonols, isoflavones and flavanones, their aglycons, anthraquinones, chalcones, and theaflavins. All the polyphenols in 63 vegetables, fruits, and teas were then examined in terms of content and class. The present method offers accuracy by avoiding the decomposition of polyphenols during hydrolysis, the ability to determine aglycons separately from glycosides, and information on simple polyphenol levels simultaneously.

Journal ArticleDOI
TL;DR: Antioxidant activity of betalain pigments from plants of the family Amaranthaceae was evaluated using the modified DPPH(*) (1,1-diphenyl-2-picrylhydrazyl) method and the relationship between the chemical structure and the activity of the betalains was investigated and discussed.
Abstract: Antioxidant activity of betalain pigments (seven pure compounds and four combined fractions) from plants of the family Amaranthaceae was evaluated using the modified DPPH(*) (1,1-diphenyl-2-picrylhydrazyl) method. All tested betalains exhibited strong antioxidant activity. Their EC(50) values ranged from 3.4 to 8.4 microM. Gomphrenin type betacyanins (mean = 3.7 microM) and betaxanthins (mean = 4.2 microM) demonstrated the strongest antioxidant activity, 3-4-fold stronger than ascorbic acid (13.9 microM) and also stronger than rutin (6.1 microM) and catechin (7.2 microM). Antioxidant activity of the tested betalains decreased in the following order: simple gomphrenins > acylated gomphrenins > dopamine-betaxanthin > (S)-tryptophan-betaxanthin > 3-methoxytyramine-betaxanthin > betanin/isobetanin > celosianins > iresinins > amaranthine/isoamaranthine. This study also investigated and discussed the relationship between the chemical structure and the activity of the betalains. The free radical scavenging activity of the betalains usually increased with the numbers of hydroxyl/imino groups and, moreover, depended on the position of hydroxyl groups and glycosylation of aglycones in the betalain molecules.

Journal ArticleDOI
TL;DR: Results indicate that flavonoids such as quercetin, epicatechin, and procyanidin B(2) rather than vitamin C contribute significantly to the total antioxidant activity of apples.
Abstract: The contribution of each phytochemical to the total antioxidant capacity of apples was determined. Major phenolic phytochemicals of six apple cultivars were identified and quantified, and their contributions to total antioxidant activity of apples were determined using a 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging assay and expressed as vitamin C equivalent antioxidant capacity (VCEAC). Average concentrations of major phenolics and vitamin C in six apple cultivars were as follows (mg/100 g of fresh weight of apples): quercetin glycosides, 13.20; procyanidin B(2), 9.35; chlorogenic acid, 9.02; epicatechin, 8.65; phloretin glycosides, 5.59; vitamin C, 12.80. A highly linear relationship (r (2) > 0.97) was attained between concentrations and total antioxidant capacity of phenolics and vitamin C. Relative VCEAC values of these compounds were in the order quercetin (3.06) > epicatechin (2.67) > procyanidin B(2) (2.36) > phloretin (1.63) > vitamin C (1.00) > chlorogenic acid (0.97). Therefore, the estimated contribution of major phenolics and vitamin C to the total antioxidant capacity of 100 g of fresh apples is as follows: quercetin (40.39 VCEAC) > epicatechin (23.10) > procyanidin B(2) (22.07) > vitamin C (12.80) > phloretin (9.11) > chlorogenic acid (8.75). These results indicate that flavonoids such as quercetin, epicatechin, and procyanidin B(2) rather than vitamin C contribute significantly to the total antioxidant activity of apples.

Journal ArticleDOI
TL;DR: Thiolytic degradation and MS/MS analyses indicated that the A-type linkages are present as a terminal unit in plum or between the extension units in curry, cinnamon, and avocado, whereas A- type linkages exist at both positions in cranberry and peanut.
Abstract: A normal-phase HPLC-MS/MS method was applied to screen for proanthocyanidins in 88 different kinds of foods. Thirty-nine foods were found to contain proanthocyanidins. These foods include 19 kinds of fruits, eight cereals/beans, seven nuts, two beverages, two spices, and one vegetable. Twenty-five kinds of foods were found to contain both oligomeric (DP 10), and the other 14 foods contained only oligomers. Procyanidins with B-type linkages were detected as the only components in 21 foods and also as principal components in the others. Propelargonidins were identified in pinto bean, raspberry, strawberry, and almond, etc. Plum, avocado, peanut, curry, and cinnamon were identified as potential sources of A-type proanthocyanidins in addition to cranberry. Thiolytic degradation and MS/MS analyses indicated that the A-type linkages are present as a terminal unit in plum or between the extension units in curry, cinnamon, and avocado, whereas A-type linkages exist at both positions in cranberry and peanut.

Journal ArticleDOI
TL;DR: The results obtained in this study will further the understanding of the polyphenolic composition of apples and their roles in health-promoting physiological functions.
Abstract: Polyphenolic compounds of apple may play an important role in physiologic functions related to human health. Different polyphenolics may have varied biological activities including antioxidant activity. The objective of this study was to investigate the profiles of polyphenolic compounds in different apple varieties and different parts of an apple. The total and individual polyphenolics differed significantly among the eight apple cultivars grown in Ontario, and the peels had higher concentrations than the flesh. Among the tested cultivars, Red Delicious and Northern Spy had the highest concentrations and Empire the lowest. Five major polyphenolic groups with a total of 16 identified individual compounds were found, among which the dihydroxycinnamic acid esters, phloretin glycosides, and flavan-3-ols were found in both flesh and peel, whereas quercetin glycosides were almost exclusively found in the peel. Cyanidin 3-galactoside was unique to and found only in red apple peels. In both apple peel and flesh, the predominant group of polyphenolics was the procyanidins, followed by quercetin glycosides in the peel and hydroxycinnamic acid esters in the flesh. 3-Hydroxyphloretin 2'-xyloglucoside was newly identified in apple. The results obtained in this study will further the understanding of the polyphenolic composition of apples and their roles in health-promoting physiological functions.

Journal ArticleDOI
TL;DR: Overall, free phenolic content was weakly correlated with total antioxidant activity, and flavonoid and anthocyanin content did not correlate with total antioxidants activity.
Abstract: Strawberries contain high levels of antioxidants, which have been correlated with a decreased risk of chronic disease. To more fully characterize the antioxidant profiles and possible associated health benefits of this fruit, the total free and bound phenolic, total flavonoid, and total anthocyanin contents of eight strawberry cultivars (Earliglow, Annapolis, Evangeline, Allstar, Sable, Sparkle, Jewel, and Mesabi) were measured. Cultivar effects on phenolic contents were compared with antioxidant capacities, as measured by the total oxyradical scavenging capacity (TOSC) assay, and to antiproliferative activities, as measured by inhibition of HepG2 human liver cancer cell proliferation in vitro. Free phenolic contents differed by 65% between the highest (Earliglow) and the lowest (Allstar) ranked cultivars. The water soluble bound and ethyl acetate soluble bound phenolic contents averaged 5% of the total phenolic content of the cultivars. The total flavonoid content of Annapolis was 2-fold higher than that...

Journal ArticleDOI
TL;DR: The phytochemicals profiles of the three adlay varieties, including both free and bound of total phenolics and total flavonoids, and the total antioxidant activity of adlay were determined to determine.
Abstract: Consumption of whole grains has been associated with reduced risk of developing major chronic diseases. These health benefits have been attributed in part to their unique phytochemicals. Little is known about the complete profiles of phytochemicals and antioxidant activities of different adlay varieties. The objectives of this study were to determine the phytochemicals profiles of the three adlay varieties, including both free and bound of total phenolics and total flavonoids, and to determine the total antioxidant activity of adlay. The free, bound, and total phenolic contents of adlay samples ranged from 31.23 to 45.19 mg of gallic acid equiv/100 g of sample, from 28.07 to 30.86 mg of gallic acid equiv/100 g of sample, and from 59.30 to 76.04 mg of gallic acid equiv/100 g of sample, respectively. On average, the bound phenolics contributed 45.3% of total phenolic content of the adlay varieties analyzed. The free, bound, and total flavonoid contents of adlay samples ranged from 6.21 to 18.24 mg of catechin equiv/100 g, from 18.68 to 35.27 mg of catechin equiv/100 g, and from 24.88 to 52.86 mg of catechin equiv/100 g, respectively. The average values of bound flavonoids contributed 71.1% of total flavonoids of the adlay varieties analyzed. The percentage contribution of flavonoid content to phenolic content of free, bound, and total ranged from 11.6 to 35.2%, from 50.5 to 66.8%, and from 24.6 to 50.5%. The free, bound, and total oxygen radical absorbance capacity (ORAC) values of adlay samples ranged from 231.9 to 316.6 mg of Trolox equiv/100 g, from 209.0 to 351.4 mg of Trolox equiv/100 g, and from 440.9 to 668.0 mg of Trolox equiv/100 g, respectively. The average ORAC values of bound phytochemicals contributed 48.1% of total antioxidant activity of the adlay varieties analyzed. The content of total polyphenol and the antioxidant capacity are obviously different among different species. Liaoning 5 adlay and Longyi 1 adlay are significantly better than Guizhou heigu adlay. The adlay extracts have obvious proliferate inhibition on human liver cancer cells, and substantially in the experimental concentration range, the adlay sample itself has no cytotoxicity. Knowing the phytochemical profiles and antioxidant activity of adlay gives insights to its potential application to promote health.

Journal ArticleDOI
TL;DR: Two samples of tartary buckwheat (Fagopyrum tataricum Gaertn.) from China and one from Luxembourg were studied by high-performance liquid chromatography (HPLC) to reveal the possibilities of growing tartary Buckwheat herb as a possible source of rutin, quercetin, and quercitrin.
Abstract: Two samples of tartary buckwheat (Fagopyrum tataricum Gaertn.) from China and one from Luxembourg were studied by high-performance liquid chromatography (HPLC) to reveal the possibilities of growing tartary buckwheat herb as a possible source of rutin, quercetin, and quercitrin. The content of rutin was determined as up to 3% dry weight (DW) in tartary buckwheat herb. Quercitrin values were in the range of 0.01-0.05% DW. Only traces of quercetin were detected in just some of the samples. Tartary buckwheat seeds contained more rutin (about 0.8-1.7% DW) than common buckwheat seeds (0.01% DW). Rutin and quercetin content in seeds depends on variety and growing conditions. Tartary buckwheat seeds contained traces of quercitrin and quercetin, which were not found in common buckwheat seeds.

Journal ArticleDOI
TL;DR: Tissues of M. oleifera and M. stenopetala and leaves of both species contained quercetin 3-O-rhamnoglucoside (rutin) and 5-caffeoylquinic acid, and proanthocyanidins nor anthocyanins were detected in any of the tissues of either species.
Abstract: Moringa species are important multi-purpose tropical crops, as human foods and for medicine and oil production. There has been no previous comprehensive analysis of the secondary metabolites in Moringa species. Tissues of M. oleifera from a wide variety of sources and M. stenopetala from a single source were analyzed for glucosinolates and phenolics (flavonoids, anthocyanins, proanthocyanidins, and cinnamates). M. oleifera and M. stenopetala seeds only contained 4-(alpha-l-rhamnopyranosyloxy)-benzylglucosinolate at high concentrations. Roots of M. oleifera and M. stenopetala had high concentrations of both 4-(alpha-l-rhamnopyranosyloxy)-benzylglucosinolate and benzyl glucosinolate. Leaves from both species contained 4-(alpha-l-rhamnopyranosyloxy)-benzylglucosinolate and three monoacetyl isomers of this glucosinolate. Only 4-(alpha-l-rhamnopyranosyloxy)-benzylglucosinolate was detected in M. oleifera bark tissue. M. oleifera leaves contained quercetin-3-O-glucoside and quercetin-3-O-(6' '-malonyl-glucoside), and lower amounts of kaempferol-3-O-glucoside and kaempferol-3-O-(6' '-malonyl-glucoside). M. oleifera leaves also contained 3-caffeoylquinic acid and 5-caffeoylquinic acid. Leaves of M. stenopetala contained quercetin 3-O-rhamnoglucoside (rutin) and 5-caffeoylquinic acid. Neither proanthocyanidins nor anthocyanins were detected in any of the tissues of either species.

Journal ArticleDOI
TL;DR: Results indicate that the bilberry extract and the anthocyanins, bearing delphinidin or malvidin as the aglycon, inhibit the growth of HL60 cells through the induction of apoptosis.
Abstract: Among ethanol extracts of 10 edible berries, bilberry extract was found to be the most effective at inhibiting the growth of HL60 human leukemia cells and HCT116 human colon carcinoma cells in vitro. Bilberry extract induced apoptotic cell bodies and nucleosomal DNA fragmentation in HL60 cells. The proportion of apoptotic cells induced by bilberry extract in HCT116 was much lower than that in HL60 cells, and DNA fragmentation was not induced in the former. Of the extracts tested, that from bilberry contained the largest amounts of phenolic compounds, including anthocyanins, and showed the greatest 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity. Pure delphinidin and malvidin, like the glycosides isolated from the bilberry extract, induced apoptosis in HL60 cells. These results indicate that the bilberry extract and the anthocyanins, bearing delphinidin or malvidin as the aglycon, inhibit the growth of HL60 cells through the induction of apoptosis. Only pure delphinidin and the glycoside isolated from the bilberry extract, but not malvidin and the glycoside, inhibited the growth of HCT116 cells.

Journal ArticleDOI
TL;DR: A decarboxylated Amadori product of asparagine with reducing sugars is the key precursor of acrylamide and can be formed under mild conditions through the intramolecular cyclization of the initial Schiff base and formation of oxazolidin-5-one.
Abstract: Structural considerations dictate that asparagine alone may be converted thermally into acrylamide through decarboxylation and deamination reactions. However, the main product of the thermal decomposition of asparagine was maleimide, mainly due to the fast intramolecular cyclization reaction that prevents the formation of acrylamide. On the other hand, asparagine, in the presence of reducing sugars, was able to generate acrylamide in addition to maleimide. Model reactions were performed using FTIR analysis, and labeling studies were carried out using pyrolysis-GC/MS as an integrated reaction, separation, and identification system to investigate the role of reducing sugars. The data have indicated that a decarboxylated Amadori product of asparagine with reducing sugars is the key precursor of acrylamide. Furthermore, the decarboxylated Amadori product can be formed under mild conditions through the intramolecular cyclization of the initial Schiff base and formation of oxazolidin-5-one. The low-energy decarboxylation of this intermediate makes it possible to bypass the cyclization reaction, which is in competition with thermally induced decarboxylation, and hence promote the formation of acrylamide in carbohydrate/asparagine mixtures. Although the decarboxylated Amadori compound can be formed under mild conditions, it requires elevated temperatures to cleave the carbon-nitrogen covalent bond and produce acrylamide.

Journal ArticleDOI
TL;DR: According to previous results, ellagic acid and not resveratrol was the major phenolic in muscadine grapes, but reported here for the first time are the phenolic content and antioxidant capacity of mus cadine leaves.
Abstract: Fruits of 10 cultivars of muscadine grapes (five bronze skin and five purple skin) grown in southern Georgia were separated into skin, seed, and pulp. Each fruit part and the leaves from the corresponding varieties were extracted for HPLC analysis of major phenolics. Total phenolics were determined colorimetrically using Folin−Ciocalteu reagent. Total anthocyanins were determined according to a pH-differential method, using a UV−visible spectrophotometer. Antioxidant capacity was determined by the Trolox equivalent antioxidant capacity (TEAC) assay. Gallic acid, (+)-catechin, and epicatechin were the major phenolics in seeds, with average values of 6.9, 558.4, and 1299.4 mg/100 g of fresh weight (FW), respectively. In the skins, ellagic acid, myricetin, quercetin, kaempferol, and trans-resveratrol were the major phenolics, with respective average values of 16.5, 8.4, 1.8, 0.6, and 0.1 mg/100 g of FW. Contrary to previous results, ellagic acid and not resveratrol was the major phenolic in muscadine grapes....

Journal ArticleDOI
TL;DR: Investigation of differences in the physical properties and oxidative stability of corn oil-in-water emulsions stabilized by casein, whey protein isolate (WPI), or soyprotein isolate (SPI) at pH 3.0 shows that differences can be seen in the oxidative stability.
Abstract: Proteins can be used to produce cationic oil-in-water emulsion droplets at pH 3.0 that have high oxidative stability. This research investigated differences in the physical properties and oxidative stability of corn oil-in-water emulsions stabilized by casein, whey protein isolate (WPI), or soy protein isolate (SPI) at pH 3.0. Emulsions were prepared with 5% corn oil and 0.2-1.5% protein. Physically stable, monomodal emulsions were prepared with 1.5% casein, 1.0 or 1.5% SPI, and > or =0.5% WPI. The oxidative stability of the different protein-stabilized emulsions was in the order of casein > WPI > SPI as determined by monitoring both lipid hydroperoxide and headspace hexanal formation. The degree of positive charge on the protein-stabilized emulsion droplets was not the only factor involved in the inhibition of lipid oxidation because the charge of the emulsion droplets (WPI > casein > or = SPI) did not parallel oxidative stability. Other potential reasons for differences in oxidative stability of the protein-stabilized emulsions include differences in interfacial film thickness, protein chelating properties, and differences in free radical scavenging amino acids. This research shows that differences can be seen in the oxidative stability of protein-stabilized emulsions; however, further research is needed to determine the mechanisms for these differences.