scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Agricultural and Food Chemistry in 2007"


Journal ArticleDOI
TL;DR: The CAA assay is a more biologically relevant method than the popular chemistry antioxidant activity assays because it accounts for some aspects of uptake, metabolism, and location of antioxidant compounds within cells.
Abstract: A cellular antioxidant activity (CAA) assay for quantifying the antioxidant activity of phytochemicals, food extracts, and dietary supplements has been developed Dichlorofluorescin is a probe that is trapped within cells and is easily oxidized to fluorescent dichlorofluorescein (DCF) The method measures the ability of compounds to prevent the formation of DCF by 2,2′-azobis(2-amidinopropane) dihydrochloride (ABAP)-generated peroxyl radicals in human hepatocarcinoma HepG2 cells The decrease in cellular fluorescence when compared to the control cells indicates the antioxidant capacity of the compounds The antioxidant activities of selected phytochemicals and fruit extracts were evaluated using the CAA assay, and the results were expressed in micromoles of quercetin equivalents per 100 µmol of phytochemical or micromoles of quercetin equivalents per 100 g of fresh fruit Quercetin had the highest CAA value, followed by kaempferol, epigallocatechin gallate (EGCG), myricetin, and luteolin among the pure co

1,011 citations


Journal ArticleDOI
TL;DR: The present paper demonstrates that both hardwoods and softwoods are readily soluble in various imidazolium-based ionic liquids (ILs) under gentle conditions, and offers a variety of new possibilities for its structural and macromolecular characterization, without the prior isolation of its individual components.
Abstract: The present paper demonstrates that both hardwoods and softwoods are readily soluble in various imidazolium-based ionic liquids (ILs) under gentle conditions. More specifically, a variety of ionic liquids can only partially dissolve wood chips, whereas ionic liquids such as 1-butyl-3-methylimidazolium chloride and 1-allyl-3-methylimidazolium chloride have good solvating power for Norway spruce sawdust and Norway spruce and Southern pine thermomechanical pulp (TMP) fibers. Despite the fact that the obtained solutions were not fully clear, these ionic liquids provided solutions which permitted the complete acetylation of the wood. Alternatively, transparent amber solutions of wood could be obtained when the dissolution of the same lignocellulosic samples was attempted in 1-benzyl-3-methylimidazolium chloride. This realization was based on a designed augmented interaction of the aromatic character of the cation of the ionic liquid with the lignin in the wood. After dissolution, wood can be regenerated as an ...

950 citations


Journal ArticleDOI
TL;DR: The essential oils of rosemary and sage were analyzed by means of gas chromatography-mass spectrometry and assayed for their antimicrobial and antioxidant activities and strong inhibition of LP in both systems of induction was especially observed for the essential oil ofrosemary.
Abstract: The essential oils of rosemary ( Rosmarinus officinalis L.) and sage ( Salvia officinalis L.) were analyzed by means of gas chromatography-mass spectrometry and assayed for their antimicrobial and antioxidant activities. Antimicrobial activity was tested against 13 bacterial strains and 6 fungi, including Candida albicans and 5 dermatomycetes. The most important antibacterial activity of both essential oils was expressed on Escherichia coli, Salmonella typhi, S. enteritidis, and Shigella sonei. A significant rate of antifungal activity, especially of essential oil of rosemary, was also exhibited. Antioxidant activity was evaluated as a free radical scavenging capacity (RSC), together with the effect on lipid peroxidation (LP). RSC was assessed by measuring the scavenging activity of essential oils on 2,2-diphenyl-1-picrylhydrazil (DPPH) and hydroxyl radicals. Effects on LP were evaluated following the activities of essential oils in Fe(2+)/ascorbate and Fe(2+)/H2O2 systems of induction. Investigated essential oils reduced the DPPH radical formation (IC50 = 3.82 microg/mL for rosemary and 1.78 microg/mL for sage) in a dose-dependent manner. Strong inhibition of LP in both systems of induction was especially observed for the essential oil of rosemary.

618 citations


Journal ArticleDOI
TL;DR: It is speculated that the antimicrobial effect of thymol, carvacrol, p-cymene, and gamma-terpinene may result, partially at least, from a gross perturbation of the lipidic fraction of the plasmic membrane of the microorganism.
Abstract: The present article reports the antimicrobial efficacy of four monoterpenes (thymol, carvacrol, p-cymene, and gamma-terpinene) against the Gram-positive bacterium Staphylococcus aureus and the Gram-negative bacterium Escherichia coli. For a better understanding of their mechanism of action, the damage caused by these four monoterpenes on biomembranes was evaluated by monitoring the release, following exposure to the compounds under study, of the water-soluble fluorescent marker carboxyfluorescein (CF) from large unilamellar vesicles (LUVs) with different lipidic composition (phosphatidylcholine, PC, phosphatidylcholine/phosphatidylserine, PC/PS, 9:1; phosphatidylcholine/stearylamine, PC/SA, 9:1). Furthermore, the interaction of these terpenes with dimyristoylphosphatidylcholine multilamellar vesicles as model membranes was monitored by means of differential scanning calorimetry (DSC) technique. Finally, the results were related also with the relative lipophilicity and water solubility of the compounds examined. We observed that thymol is considerably more toxic against S. aureus than the other three terpenes, while carvacrol and p-cymene are the most inhibitory against E. coli. Thymol and carvacrol, but not gamma-terpinene and p-cymene, caused a concentration-dependent CF leakage from all kinds of LUVs employed; in particular, thymol was more effective on PC and PC/SA LUVS than on PC/PS vesicles, while carvacrol challenge evoked a CF leakage from PC/PS LUVs similar to that induced from PC/SA LUVs, and lower than that measured with PC vesicles. Concerning DSC experiments, these four terpenes caused a decrease in Tm and (especially carvacrol and p-cymene) DeltaH values, very likely acting as substitutional impurities. Taken together, our findings lead us to speculate that the antimicrobial effect of thymol, carvacrol, p-cymene, and gamma-terpinene may result, partially at least, from a gross perturbation of the lipidic fraction of the plasmic membrane of the microorganism. In addition to being related to the physicochemical characteristics of the compounds (such as lipophilicity and water solubility), this effect seems to be dependent on the lipidic composition and net surface charge of the microbic membranes. Furthermore, the compounds might cross the cell membranes, thus penetrating into the interior of the cell and interacting with intracellular sites critical for antibacterial activity.

558 citations


Journal ArticleDOI
TL;DR: The overall results showed a strong decrease of the unsaturated fatty acids for the treated cells; in particular, the C18:2trans andC18:3cis underwent a notable reduction contributing to the total UFA decreases, while the saturated fatty acid C17:0 raised the highest concentration in cinnamaldehyde-treated cells.
Abstract: Natural antimicrobial compounds perform their action mainly against cell membranes. The aim of this work was to evaluate the interaction, meant as a mechanism of action, of essential oil antimicrobial compounds with the microbial cell envelope. The lipid profiles of Escherichia coli O157:H7, Staphylococcus aureus, Salmonella enterica serovar Typhimurium, Pseudomonas fluorescens, and Brochothrix thermosphacta cells treated with thymol, carvacrol, limonene, eugenol, and cinnamaldehyde have been analyzed by gas chromatography. In line with the fatty acids analysis, the treated cells were also observed by scanning electron microscopy (SEM) to evaluate structural alterations. The overall results showed a strong decrease of the unsaturated fatty acids (UFAs) for the treated cells; in particular, the C18:2trans and C18:3cis underwent a notable reduction contributing to the total UFA decreases, while the saturated fatty acid C17:0 raised the highest concentration in cinnamaldehyde-treated cells. SEM images showed that the used antimicrobial compounds quickly exerted their antimicrobial activities, determining structural alterations of the cell envelope.

534 citations


Journal ArticleDOI
Ana Escudero1, Eva Campo1, Laura Fariña1, Juan Cacho1, Vicente Ferreira1 
TL;DR: The aroma profile of five premium red wines has been studied by sensory descriptive analysis, quantitative gas chromatography-olfactometry (GC-O), and chemical quantitative analysis, and the most relevant findings have been confirmed by sensory analysis.
Abstract: The aroma profile of five premium red wines has been studied by sensory descriptive analysis, quantitative gas chromatography−olfactometry (GC-O), and chemical quantitative analysis. The most relevant findings have been confirmed by sensory analysis. Forty-five odorants, including the most intense, were identified. At least 37 odorants can be found at concentrations above their odor threshold. A satisfactory agreement between GC-O and quantitative data was obtained in most cases. Isobutyl-2-methoxypyrazine, (E)-whiskey lactone, and guaiacol were responsible for the veggie, woody, and toasted characters of the wines, respectively. The sweet-caramel notes are related to the presence of at least five compounds with flowery and sweet notes. The phenolic character can be similarly related to the presence of 12 volatile phenols. The berry fruit note of these wines is related to the additive effect of nine fruity esters. Ethanol exerts a strong suppression effect on fruitiness, whereas norisoprenoids and dimethy...

529 citations


Journal ArticleDOI
TL;DR: The structural diversity of dihydroflavonols characterized from onions is restricted compared with the wide structural assortment of flavonols and anthocyanins identified, and they may occur at high concentrations in some cultivars.
Abstract: Onion bulbs (Allium cepa L) are among the richest sources of dietary flavonoids and contribute to a large extent to the overall intake of flavonoids This review includes a compilation of the existing qualitative and quantitative information about flavonoids reported to occur in onion bulbs, including NMR spectroscopic evidence used for structural characterization In addition, a summary is given to index onion cultivars according to their content of flavonoids measured as quercetin Only compounds belonging to the flavonols, the anthocyanins, and the dihydroflavonols have been reported to occur in onion bulbs Yellow onions contain 270–1187 mg of flavonols per kilogram of fresh weight (FW), whereas red onions contain 415–1917 mg of flavonols per kilogram of FW Flavonols are the predominant pigments of onions At least 25 different flavonols have been characterized, and quercetin derivatives are the most important ones in all onion cultivars Their glycosyl moieties are almost exclusively glucose, which

509 citations


Journal ArticleDOI
TL;DR: Fluorescence quenching has proven to be a very sensitive technique with many potentialities to analyze the interaction between polyphenols and proteins because it can detect several interactions that have not been proven by other methods, namely, nephelometry.
Abstract: Phenolic compounds are responsible for major organoleptic characteristics of plant-derived food and beverages; these substances have received much attention, given that the major function of these compounds is their antioxidant ability. In the context of this study, our major aim was study the binding of several phenolic compounds such as (+)-catechin, (−)-epicatechin, (−)-epicatechin gallate, malvidin-3-glucoside, tannic acid, procyanidin B4, procyanidin B2 gallate, and procyanidin oligomers to different proteins (bovine serum albumin and human α-amylase) by fluorescence quenching of protein intrinsic fluorescence. From the spectra obtained, the Stern−Volmer, the apparent static, and the bimolecular quenching constants were calculated. The structure of polyphenols revealed to significantly affect the binding/quenching process; in general, the binding affinity increased with the molecular weight of polyphenol compounds and in the presence of galloyl groups. For catechin monomer and procyanidin dimer B4, t...

454 citations


Journal ArticleDOI
TL;DR: Hydroxyl radical scavenging activity of fucoxanthin and fu Coxanthinol compared with halocynthiaxanthin is assumed to be due to presence of the allenic bond, and ESR analysis of the superoxide radical scavenge activity showed the superiority of fuoxanthin over the other two carotenoids tested.
Abstract: Antioxidant activity of carotenoids is suggested to be one of the factors for their disease preventing effects. Marine carotenoids fucoxanthin and its two metabolites, fucoxanthinol and halocynthiaxanthin, have been shown to exhibit several biological effects. The antioxidant activities of these three carotenoids were assessed in vitro with respect to radical scavenging and singlet oxygen quenching abilities. The 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity of fucoxanthin and fucoxanthinol was higher than that of halocynthiaxanthin, with the effective concentration for 50% scavenging (EC 50) being 164.60, 153.78, and 826.39 microM, respectively. 2,2'-Azinobis-3-ethylbenzo thizoline-6-sulphonate radical scavenging activity of fucoxanthinol (EC 50, 2.49 microM) was stronger than that of fucoxanthin (EC 50, 8.94 microM). Hydroxyl radical scavenging activity as measured by the chemiluminescence technique showed that the scavenging activity of fucoxanthin was 7.9 times higher than that by fucoxanthinol, 16.3 times higher than that by halocynthiaxanthin, and 13.5 times higher than that by alpha-tocopherol. A similar trend was observed when the hydroxyl radical scavenging was assessed by the electron spin resonance (ESR) technique. ESR analysis of the superoxide radical scavenging activity also showed the superiority of fucoxanthin over the other two carotenoids tested. Singlet oxygen quenching ability of the three carotenoids was lower than that of beta-carotene, with quenching rate constants ( k Q, x10 (10) M (-1) s (-1)) being 1.19, 1.81, 0.80, and 12.78 for fucoxanthin, fucoxanthinol, halocynthiaxanthin, and beta-carotene, respectively. The higher radical scavenging activity of fucoxanthin and fucoxanthinol compared with halocynthiaxanthin is assumed to be due to presence of the allenic bond.

438 citations


Journal ArticleDOI
TL;DR: A comparison with intakes of perfluorocarboxylates and PFOS via other routes (air, water, dust, treated carpeting, and apparel) suggested that diet is an important source of these compounds.
Abstract: Human exposure to perfluorinated compounds is a worldwide phenomenon; however, routes of human exposure to these compounds have not been well-characterized. Fifty-four solid food composite samples collected as part of the Canadian Total Diet Study (TDS) were analyzed for perfluorocarboxylates and perfluorooctanesulfonate (PFOS) using a methanol extraction liquid chromatography tandem mass spectrometry method. Foods analyzed included fish and seafood, meat, poultry, frozen entrees, fast food, and microwave popcorn collected from 1992 to 2004 and prepared as for consumption. Nine composites contained detectable levels of perfluorinated compoundsfour meat-containing, three fish and shellfish, one fast food, and one microwave popcorn. PFOS and perfluorooctanoate (PFOA) were detected the most frequently; concentrations ranged from 0.5 to 4.5 ng/g. The average dietary intake of total perfluorocarboxylates and PFOS for Canadians was estimated to be 250 ng/day, using results from the 2004 TDS composites. A compar...

403 citations


Journal ArticleDOI
TL;DR: The use of recombinant DNA technology to produce large quantities of lipases, and the use of immobilized lipases and immobilized whole cells, may lower the overall cost, while presenting less downstream processing problems, to biodiesel production.
Abstract: The need for alternative energy sources that combine environmental friendliness with biodegradability, low toxicity, renewability, and less dependence on petroleum products has never been greater. One such energy source is referred to as biodiesel. This can be produced from vegetable oils, animal fats, microalgal oils, waste products of vegetable oil refinery or animal rendering, and used frying oils. Chemically, they are known as monoalkyl esters of fatty acids. The conventional method for producing biodiesel involves acid and base catalysts to form fatty acid alkyl esters. Downstream processing costs and environmental problems associated with biodiesel production and byproducts recovery have led to the search for alternative production methods and alternative substrates. Enzymatic reactions involving lipases can be an excellent alternative to produce biodiesel through a process commonly referred to alcoholysis, a form of transesterification reaction, or through an interesterification (ester interchange) reaction. Protein engineering can be useful in improving the catalytic efficiency of lipases as biocatalysts for biodiesel production. The use of recombinant DNA technology to produce large quantities of lipases, and the use of immobilized lipases and immobilized whole cells, may lower the overall cost, while presenting less downstream processing problems, to biodiesel production. In addition, the enzymatic approach is environmentally friendly, considered a "green reaction", and needs to be explored for industrial production of biodiesel.

Journal ArticleDOI
TL;DR: This is the first time that the identification of beta-zeacarotene in natural sources is supported by MS data, and all fruits analyzed can be considered good sources of provitamin A, especially buriti, with 7280 RE/100 g.
Abstract: The major and minor carotenoids from six fruits, buriti (Mauritia vinifera), mamey (Mammea americana), marimari (Geoffrola striata), peach palm (Bactrys gasipaes), physalis (Physalis angulata), and tucuma (Astrocaryum aculeatum), all native to the Amazonia region, were determined by high-performance liquid chromatography-photodiode array detector-mass spectrometry detector (HPLC-PDA-MS/MS), fulfilling the recommended criteria for identification. A total of 60 different carotenoids were separated on a C30 column, all-trans-beta-carotene being the major carotenoid found in all fruits. The presence of apo-10'-beta-carotenol, found in mamey, was not previously reported in foods. In addition, this is the first time that the identification of beta-zeacarotene in natural sources is supported by MS data. The total carotenoid content ranged from 38 microg/g in marimari to 514 microg/g in buriti. All fruits analyzed can be considered good sources of provitamin A, especially buriti, with 7280 RE/100 g.

Journal ArticleDOI
TL;DR: The results showed that after heat treatment, the free fraction of phenolic acids increased, whereas ester, glycoside, and ester-bound fractions decreased and the content of total FGs declined, suggesting that a proper and reasonable heat treatment could be used to enhance the antioxidant capacity of citrus peel.
Abstract: This paper reports the effects of heat treatment on huyou (Citrus paradisi Changshanhuyou) peel in terms of phenolic compounds and antioxidant capacity. High-performance liquid chromatography (HPLC) coupled with a photodiode array (PDA) detector was used in this study for the analysis of phenolic acids (divided into four fractions: free, ester, glycoside, and ester-bound) and flavanone glycosides (FGs) in huyou peel (HP) before and after heat treatment. The results showed that after heat treatment, the free fraction of phenolic acids increased, whereas ester, glycoside, and ester-bound fractions decreased and the content of total FGs declined (P < 0.05). Furthermore, the antioxidant activity of methanol extract of HP increased (P < 0.05), which was evaluated by total phenolics contents (TPC) assay, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) (ABTS*+) method, and ferric reducing antioxidant power (FRAP) assay. The correlation coefficients among TPC, ABTS, FRAP assay, and total cinnamics and benzoics (TCB) in the free fraction were significantly high (P < 0.05), which meant that the increase of total antioxidant capacity (TAC) of HP extract was due at least in part to the increase of TCB in free fraction. In addition, FGs may be destroyed when heated at higher temperature for a long time (for example, 120 degrees C for 90 min or 150 degrees C for 30 min). Therefore, it is suggested that a proper and reasonable heat treatment could be used to enhance the antioxidant capacity of citrus peel.

Journal ArticleDOI
TL;DR: The results underscore the superiority of berries, especially dark blue or red berries, as excellent sources of anthocyanins and certain berries of the Rosaceae family as the major source of ellagitannins in the Finnish diet.
Abstract: Numerous in vitro and in vivo studies have suggested that dietary anthocyanins and ellagitannins or ellagic acid might have beneficial health effects. Epidemiological evidence on the disease-preventing potential of these polyphenols is lacking, due to the absence of reliable data on their contents in foods. In this study was analyzed the content of anthocyanins and ellagitannins (as ellagic acid equivalents after acid hydrolysis) in foods consumed in Finland, including berries, fruits, vegetables, and processed products, using high-performance liquid chromatographic (HPLC) methods. Anthocyanins were detected in 41 of 54 selected food items. The total anthocyanin content varied in berries from 1 to 611 mg/100 g, in fruits from 2 to 66 mg/100 g, and in vegetables from 3 to 75 mg/100 g of fresh weight as the weight of the aglycone. Ellagitannins were screened in 33 food items, but were detected only in 5 species of berries, that is, in cloudberry, raspberry, rose hip, strawberry, and sea buckthorn, the content ranging from 1 to 330 mg/100 g. The results underscore the superiority of berries, especially dark blue or red berries, as excellent sources of anthocyanins and certain berries of the Rosaceae family as the major source of ellagitannins in the Finnish diet.

Journal ArticleDOI
TL;DR: The study showed potential for pumpkin seed oil from all 12 cultivars to have high oxidative stability that would be suitable for food and industrial applications, as well as high unsaturation and tocopherol content that could potentially improve the nutrition of human diets.
Abstract: Twelve pumpkin cultivars (Cucurbita maxima D.), cultivated in Iowa, were studied for their seed oil content, fatty acid composition, and tocopherol content. Oil content ranged from 10.9 to 30.9%. Total unsaturated fatty acid content ranged from 73.1 to 80.5%. The predominant fatty acids present were linoleic, oleic, palmitic, and stearic. Significant differences were observed among the cultivars for stearic, oleic, linoleic, and gadoleic acid content of oil. Low linolenic acid levels were observed (<1%). The tocopherol content of the oils ranged from 27.1 to 75.1 microg/g of oil for alpha-tocopherol, from 74.9 to 492.8 microg/g for gamma-tocopherol, and from 35.3 to 1109.7 microg/g for delta-tocopherol. The study showed potential for pumpkin seed oil from all 12 cultivars to have high oxidative stability that would be suitable for food and industrial applications, as well as high unsaturation and tocopherol content that could potentially improve the nutrition of human diets.

Journal ArticleDOI
TL;DR: The greatest inhibitory activity toward malonaldehyde (MA) formation from squalene upon UV-irradiation was obtained from parsley seed oil (inhibitory effect, 67%), followed by rose oil (46%), and celery seedOil (23%) at the level of 500 microg/mL.
Abstract: Thirteen essential oils were examined for their antioxidant activity using three different assay systems. Jasmine, parsley seed, rose, and ylang-ylang oils inhibited hexanal oxidation by over 95% after 40 days at a level of 500 microg/mL in the aldehyde/carboxylic acid assay. Scavenging abilities of the oils for the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical ranged from 39% for angelica seed oil to 90% for jasmine oil at a level of 200 microg/mL. The greatest inhibitory activity toward malonaldehyde (MA) formation from squalene upon UV-irradiation was obtained from parsley seed oil (inhibitory effect, 67%), followed by rose oil (46%), and celery seed oil (23%) at the level of 500 microg/mL. The main compounds of oils showing high antioxidant activity were limonene (composition, 74.6%) in celery seed, benzyl acetate (22.9%) in jasmine, alpha-pinene (33.7%) in juniper berry, myristicin (44%) in parsley seed, patchouli alcohol (28.8%) in patchouli, citronellol (34.2%) in rose, and germacrene (19.1%) in ylang-ylang.

Journal ArticleDOI
TL;DR: The results showed that the antioxidant activity in aril juice correlated significantly to the total polyphenol and anthocyanin contents, however, the homogenates prepared from the whole fruit exhibited an approximately 20-fold higher antioxidant activity than the level found in the aril Juice.
Abstract: Pomegranate juice is well known for its health beneficial compounds, which can be attributed to its high level of antioxidant activity and total polyphenol content. Our objective was to study the relationships between antioxidant activity, total polyphenol content, total anthocyanins content, and the levels of four major hydrolyzable tannins in four different juices/homogenates prepared from different sections of the fruit. To this end, 29 different accessions were tested. The results showed that the antioxidant activity in aril juice correlated significantly to the total polyphenol and anthocyanin contents. However, the homogenates prepared from the whole fruit exhibited an approximately 20-fold higher antioxidant activity than the level found in the aril juice. Unlike the arils, the antioxidant level in the homogenates correlated significantly to the content of the four hydrolyzable tannins in which punicalagin is predominant, while no correlation was found to the level of anthocyanins.

Journal ArticleDOI
TL;DR: The antibacterial activity, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) of cinnamon stick extract were evaluated against five common foodborne pathogenic bacteria.
Abstract: Cinnamomum burmannii Blume (cinnamon stick) from Indonesia is a little-investigated spice. In this study, the antibacterial activity, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) of cinnamon stick extract were evaluated against five common foodborne pathogenic bacteria (Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, and Salmonella anatum). Cinnamon stick extract exhibited significant antibacterial properties. Major compounds in cinnamon stick were tentatively identified by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography (LC-MS) as a predominant volatile oil component ((E)-cinnamaldehyde) and several polyphenols (mainly proanthocyanidins and (epi)catechins). Both (E)-cinnamaldehyde and proanthocyanidins significantly contributed to the antibacterial properties. Additionally, scanning electron microscopy was used to observe morphological changes of bacteria treated with the crude extract of cinnamon stick and its major components. This study suggests that cinnamon stick and its bioactive components have potential for application as natural food preservatives.

Journal ArticleDOI
TL;DR: Phenolic compounds in strawberry (Fragaria x ananassa) fruits were identified and characterized by using the complementary information from different high-performance liquid chromatography detectors: diode array, mass spectrometer in positive and negative mode, and coulometric array.
Abstract: Phenolic compounds in strawberry (Fragaria x ananassa) fruits were identified and characterized by using the complementary information from different high-performance liquid chromatography detectors: diode array, mass spectrometer in positive and negative mode, and coulometric array. Electrochemical profiles obtained from the coulometric array detector contributed to the structural elucidation suggested from the UV-vis and mass spectra. About 40 phenolic compounds including glycosides of quercetin, kaempferol, cyanidin, pelargonidin, and ellagic acid, together with flavanols, derivatives of p-coumaric acid, and ellagitannins, were described, providing a more complete identification of phenolic compounds in strawberry fruits. Quercetin-3-malonylhexoside and a deoxyhexoside of ellagic acid were reported for the first time. Antioxidative properties of individual components in strawberries were estimated by their electrochemical responses. Ascorbic acid was the single most important contributor to electrochemical response in strawberries (24%), whereas the ellagitannins and the anthocyanins were the groups of polyphenols with the highest contributions, 19 and 13% at 400 mV, respectively.

Journal ArticleDOI
TL;DR: The results of this study indicated that strawberries and black grapes have relatively high antioxidant capacities associated with high contents of total phenolic compounds, ascorbic acid, and flavonols, and in most fruits and vegetables storage did not affect negatively the antioxidant capacity.
Abstract: Interest in the consumption of fresh fruits and vegetables is, to a large extent, due to its content of bioactive nutrients and their importance as dietary antioxidants. Among all of the selected fruits and vegetables, strawberries and black grapes have relatively high antioxidant capacities associated with high contents of total phenolic compounds, ascorbic acid, and flavonols. More interesting, the results of this study indicated that in most fruits and vegetables storage did not affect negatively the antioxidant capacity. Better, in some cases, an increase of the antioxidant capacity was observed in the days following their purchase, accompanied by an increase in phenolic compounds. In general, fruits and vegetables visually spoil before any significant antioxidant capacity loss occurs except in banana and broccoli. When ascorbic acid or flavonoids (aglycons of flavonols and anthocyanins) were concerned, the conclusions were similar. Their content was generally stable during storage.

Journal ArticleDOI
TL;DR: The carcinogenic mycotoxin fumonisin B2 was detected for the first time in the industrially important Aspergillus niger, which is a widely occurring species and an extremely important industrial organism, will have very important implications for biotechnology and especially food safety.
Abstract: The carcinogenic mycotoxin fumonisin B2 was detected for the first time in the industrially important Aspergillus niger. Fumonisin B2, known from Fusarium verticillioides and other Fusaria, was detected in cultures of three full genome sequenced strains of A. niger, in the ex type culture and in a culture of F. verticillioides by electrospray LC-MS analysis of methanolic extracts from agar plugs of cultures grown on several substrates. Whereas F. verticillioides produced fumonisins B1, B2, and B3 on agar media based on plant extracts, such as barley malt, oat, rice, potatoes, and carrots, A. niger produced fumonisin B2 best on agar media with a low water activity, including Czapek yeast autolysate agar with 5% NaCl. Of the media tested, only rice corn steep agar supported fumonisin production by both F. verticillioides and A. niger. However, A. niger had a different regulation of fumonisin production and a different quantitative profile of fumonisins, producing only B2 as compared to F. verticillioides. Fumonisin production by A. niger, which is a widely occurring species and an extremely important industrial organism, will have very important implications for biotechnology and especially food safety. A. niger is used for the production of citric acid and as producer of extracellular enzymes, and also as a transformation host for the expression of heterologous proteins. Certain strains of A. niger produce both ochratoxin A and fumonisins, so some foods and feeds may potentially contain two types of carcinogenic mycotoxins from this species.

Journal ArticleDOI
TL;DR: The molar extinction coefficients of 20 amino acids and the peptide bond were measured at 214 nm in the presence of acetonitrile and formic acid to enable quantitative comparison of peptides eluting from reversed-phase high-performance liquid chromatography (RP-HPLC-MS).
Abstract: The molar extinction coefficients of 20 amino acids and the peptide bond were measured at 214 nm in the presence of acetonitrile and formic acid to enable quantitative comparison of peptides eluting from reversed-phase high-performance liquid chromatography, once identified with mass spectrometry (RP-HPLC-MS). The peptide bond has a molar extinction coefficient of 923 M-1 cm-1. Tryptophan has a molar extinction coefficient that is ∼30 times higher than that of the peptide bond, whereas the molar extinction coefficients of phenylalanine, tyrosine, and histidine are ∼six times higher than that of the peptide bond. Proline, as an individual amino acid, has a negligible molar extinction coefficient. However, when present in the peptide chain (except at the N terminus), it absorbs ∼three times more than a peptide bond. Methionine has a similar molar extinction coefficient as the peptide bond, while all other amino acids have much lower molar extinction coefficients. The predictability of the molar extinction c...

Journal ArticleDOI
TL;DR: Evidence is provided that these small mass HMOs are selectively metabolized by select bifidobacterial strains and represent a potential new class of bioactive molecules functioning as prebiotics to facilitate a protective gut colonization in breast-fed newborns.
Abstract: The molecular basis by which human breast milk supports the development of a protective intestinal microbiome in infants is unknown. After lactose and lipids, human milk oligosaccharides (HMOs) are quantitatively the third largest and most diverse component of breast milk. In this work, glycomic profiling of HMO consumption by bifidobacteria using Fourier transform ion cyclotron resonance mass spectrometry reveals that one species, Bifidobacterium longum biovar infantis ATCC 15697, an isolate from the infant gut, preferentially consumes small mass oligosaccharides, representing 63.9% of the total HMOs available. These HMOs were detected in human breast milk at the onset and constantly through the first month of lactation by use of high performance liquid chromatography-chip time-of-flight mass spectrometry. Further characterization revealed that strain ATCC 15697 possesses both fucosidase and sialidase activities not present in the other tested strains. This work provides evidence that these small mass HMOs are selectively metabolized by select bifidobacterial strains and represent a potential new class of bioactive molecules functioning as prebiotics to facilitate a protective gut colonization in breast-fed newborns.

Journal ArticleDOI
TL;DR: The presence of Laricitrin, syringetin, and laricitrin 3-glucoside in red wines is reported here for the first time and the extent of hydrolysis was widely variable among wines made from the same grape cultivar, and the results suggest the influence of the type of aglycone and glycoside on the rate of hydroleysis.
Abstract: The main flavonols found in seven widespread Vitis vinifera red grape cultivars include the 3-glucosides and 3-glucuronides of myricetin and quercetin and the 3-glucosides of kaempferol and isorham...

Journal ArticleDOI
TL;DR: Results suggest that hazelnut byproducts could potentially be considered as an excellent and readily available source of natural antioxidants.
Abstract: Antioxidant efficacies of ethanol extracts of defatted raw hazelnut kernel and hazelnut byproducts (skin, hard shell, green leafy cover, and tree leaf) were evaluated by monitoring total antioxidant activity (TAA) and free-radical scavenging activity tests [hydrogen peroxide, superoxide radical, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical], together with antioxidant activity in a β-carotene−linoleate model system, inhibition of oxidation of human low-density lipoprotein (LDL) cholesterol, and inhibition of strand breaking of supercoiled deoxyribonucleic acid (DNA). In addition, yield, content of phenolics, and phenolic acid profiles (free and esterified fractions) were also examined. Generally, extracts of hazelnut byproducts (skin, hard shell, green leafy cover, and tree leaf) exhibited stronger activities than hazelnut kernel at all concentrations tested. Hazelnut extracts examined showed different antioxidative efficacies, expected to be related to the presence of phenolic compounds. Among samples...

Journal ArticleDOI
TL;DR: Comparisons of analyses of archived samples from conventional and organic production systems demonstrated statistically higher levels of quercetin and kaempferol aglycones in organic tomatoes, whereas the levels of flavonoids did not vary significantly in conventional treatments.
Abstract: Understanding how environment, crop management, and other factors, particularly soil fertility, influence the composition and quality of food crops is necessary for the production of high-quality nutritious foods. The flavonoid aglycones quercetin and kaempferol were measured in dried tomato samples (Lycopersicon esculentum L. cv. Halley 3155) that had been archived over the period from 1994 to 2004 from the Long-Term Research on Agricultural Systems project (LTRAS) at the University of CaliforniasDavis, which began in 1993. Conventional and organic processing tomato production systems are part of the set of systems compared at LTRAS. Comparisons of analyses of archived samples from conventional and organic production systems demonstrated statistically higher levels (P < 0.05) of quercetin and kaempferol aglycones in organic tomatoes. Ten-year mean levels of quercetin and kaempferol in organic tomatoes [115.5 and 63.3 mg g -1 of dry matter (DM)] were 79 and 97% higher than those in conventional tomatoes (64.6 and 32.06 mg g -1 of DM), respectively. The levels of flavonoids increased over time in samples from organic treatments, whereas the levels of flavonoids did not vary significantly in conventional treatments. This increase corresponds not only with increasing amounts of soil organic matter accumulating in organic plots but also with reduced manure application rates once soils in the organic systems had reached equilibrium levels of organic matter. Well-quantified changes in tomato nutrients over years in organic farming systems have not been reported previously.

Journal ArticleDOI
TL;DR: This review investigates the health potential of pulses, examining the bioactivity of pulse isoflavones, phytosterols, resistant starch, bioactive carbohydrates, alkaloids and saponins.
Abstract: Pulses are the seeds of legumes that are used for human consumption and include peas, beans, lentils, chickpeas, and fava beans. Pulses are an important source of macronutrients, containing almost twice the amount of protein compared to cereal grains. In addition to being a source of macronutrients and minerals, pulses also contain plant secondary metabolites that are increasingly being recognised for their potential benefits for human health. The best-studied legume is the soybean, traditionally regarded as an oilseed crop rather than a pulse. The potential health benefits of soy, particularly with respect to isoflavone content, have been the subject of much research and the focus of several reviews. By comparison, less is known about pulses. This review investigates the health potential of pulses, examining the bioactivity of pulse isoflavones, phytosterols, resistant starch, bioactive carbohydrates, alkaloids and saponins. The evidence for health properties is considered, as is the effect of processing and cooking on these potentially beneficial phytochemicals.

Journal ArticleDOI
TL;DR: Alkali hydrolysis reduced up to 90% the antioxidant activity of cereal-based insoluble matters, thus confirming that fiber-bound compounds have a major role in their antioxidant activity.
Abstract: The measurement of antioxidant activity was limited to soluble components to date. Functional groups, which are bound to insoluble matters, may exert antioxidant activity by a surface reaction phenomenon. This hypothesis was tested on the insoluble matters of foods, food ingredients, and Maillard reaction products (MRPs). Insoluble matters were prepared by consecutive washes with water and methanol followed by a lyophilization of the insoluble residue. The measurement was performed by a new procedure using 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazil (DPPH) colored radicals. These insoluble matters always showed antioxidant activity. Alkali hydrolysis reduced up to 90% the antioxidant activity of cereal-based insoluble matters, thus confirming that fiber-bound compounds have a major role in their antioxidant activity. The antioxidant activity of the insoluble MRPs was not significantly affected by processing conditions, but severe treatments increased the ratio between insoluble and soluble matters. The contribution of insoluble matter to total antioxidant activity was limited for fruits and vegetables, but it was relevant for cereal-based foods and increased over 50% for dietary-fiber-rich ingredients.

Journal ArticleDOI
TL;DR: It is demonstrated for the first time that TF-3-O-Gal can suppress glucose production from maltose through inhibition of AGH in the gut through the effects of catechins and theaflavins against alpha-glucosidase.
Abstract: To clarify the postprandial glucose suppression effect of flavonoids, the inhibitory effects of catechins and theaflavins against alpha-glucosidase (AGH) were examined in this study. It was initially demonstrated that theaflavins and catechins preferentially inhibited maltase rather than sucrase in an immobilized AGH inhibitory assay system. For the maltase inhibitory effects of theaflavins, the effects were observed in descending order of potency of theaflavin (TF)-3-O-gallate (Gal) > TF-3,3'-di-O-Gal > TF-3'-O-Gal > TF. This suggests that the AGH inhibition induced by theaflavins is closely associated with the presence of a free hydroxyl group at the 3'-position of TF as well as the esterification of TF with a mono-Gal group. In addition, the R-configuration at the 3'-position of TF-3-O-Gal showed a higher inhibitory activity than the S-configuration. As a result of a single oral administration of maltose (2 g/kg) in rats, a significant reduction in blood glucose level was observed at a dose of 10 mg/kg of TF-3-O-Gal, demonstrating for the first time that TF-3-O-Gal can suppress glucose production from maltose through inhibition of AGH in the gut.

Journal ArticleDOI
TL;DR: The results suggested that the oligomeric procyanidins contained in AP inhibited triglyceride absorption by inhibiting pancreatic lipase activity in mice and humans.
Abstract: Inhibitory effects of apple polyphenol extract (AP) and procyanidin contained in AP on in vitro pancreatic lipase activity and in vivo triglyceride absorption in mice and humans were examined. AP and procyanidin considerably inhibited in vitro pancreatic lipase activity. However, polyphenols, except for procyanidin, in AP (i.e., catechins, chalcones, and phenol carboxylic acids) showed weak inhibitory activities on pancreatic lipase. Procyanidins separated by normal-phase chromatography according to the degree of polymerization were also examined. Inhibitory effects of procyanidins increased according to the degree of polymerization from dimer to pentamer. On the other hand, pentamer or greater procyanidins showed maximal inhibitory effects on pancreatic lipase. These results suggested that with respect to in vitro pancreatic lipase inhibition, the degree of polymerization was an important factor and oligomeric procyanidin mainly contributed. Next, we performed a triglyceride tolerance test in mice and humans. Simultaneous ingestion of AP and triglyceride significantly inhibited an increase of plasma triglyceride levels in both models. These results suggested that the oligomeric procyanidins contained in AP inhibited triglyceride absorption by inhibiting pancreatic lipase activity in mice and humans.