scispace - formally typeset

Journal

Journal of Agricultural Chemistry and Environment 

About: Journal of Agricultural Chemistry and Environment is an academic journal. The journal publishes majorly in the area(s): Soil water & Fertilizer. Over the lifetime, 178 publication(s) have been published receiving 1042 citation(s).

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
Abstract: Degradation of three kinds of bioplastics and their effects on microbial biomass and microbial diversity in soil environment were analyzed. The degradation rate of bioplastic in soil was closely related to the main components in the bioplastics. Poly (butylene succinate)-starch (PBS-starch) and poly (butylene succinate) (PBS) were degraded by 1% to 7% after 28 days in a soil with an initial bacterial biomass of 1.4 × 109 cells/g-soil, however poly lactic acid (PLA) was not degraded in the soil after 28 days. When the powdered-bioplastics were examined for the degradation in the soil, PBS-starch also showed the highest degradability (24.4% degradation after 28 days), and the similar results were obtained in the case of long-term degradation experiment (2 years). To investigate the effect of bacterial biomass in soil on biodegradability of bioplastics, PBS-starch was buried in three kinds of soils differing in bacterial biomass (7.5 × 106, 7.5 × 107, and 7.5 × 108 cells/g-soil). The rate of bioplastic degradation was enhanced accompanied with an increase of the bacterial biomass in soil. 16S rDNA PCR-DGGE analysis indicated that the bacterial diversity in the soil was not affected by the degradation of bioplastics. Moreover, the degradation of bioplastic did not affect the nitrogen circulation activity in the soil.

53 citations

Journal ArticleDOI
TL;DR: With appropriate processing, cocoyams could be a rich source of starch for food and industrial applications and corms have potential for new product development.
Abstract: Cocoyams (old-taro: Colocasia esculenta; newtannia: Xanthosoma sagittifolium) yield corms as root crops produced in regions of tropical and subtropical developing countries. In certain countries such as Ghana, there are surpluses in production but deficits in cereals. Cocoyams are used in a range of indigenous foods. Post harvest losses are high due to mechanical damage of corms during harvest and microbial attacks on such damaged corms during storage. Cocoyams contain, on average, 25% starch (wet weight basis) with A-type structures characterized by small granule size (<1.5 μm). Non-starch polysaccharides in cocoyams confer gummy properties to the starch. However, mechanical effects of raphides—crystals of calcium oxalate and other components—produce irritation when raw corm tissue is ingested resulting in several levels of discomfort. With appropriate processing, cocoyams could be a rich source of starch for food and industrial applications and corms have potential for new product development. Stabilizing cocoyam crops and adding value could greatly improve its utilization in cocoyam producing countries.

51 citations

Journal ArticleDOI
TL;DR: More researches will be required in near future to elucidate the most effective antioxidant enzymes to induce highest freezing tolerance in a crop plant in a transformation process or a breeding program.
Abstract: As one of the most severe environmental stresses, freezing stress can determine native flora in nature and severely reduce crop production. Many mechanisms have been proposed to explain the damage induced by freezing-thawing cycle, and oxidative stress caused by uncontrollable production of harmful reactive oxygen species (ROS) are partially contributed to causing the injury. Plants in temperate regions have evolved a unique but effective metabolism of protecting themselves called cold acclimation. Cold-acclimating plants undergo a complex but orchestrated metabolic process to increase cold hardness triggered by exposure to low temperature and shortened photoperiod and achieve the maximum freezing tolerance by a concerted regulation and expression of a number of cold responsive genes. A complicated enzymatic system have been evolved in plants to scavenge the ROS to protect themselves from oxidative stress, therefore, cold-acclimating plants are expected to increase the de novo synthesis of the genes of antioxidant genes. Indeed, many antioxidant genes increase the expression levels in response to low temperature. Furthermore, the higher expression of many antioxidant enzymes are positively correlated to inducing higher tolerance levels against freezing. All the information summarized here can be applied for developing crop and horticultural plants to have more freezing tolerance for higher production with better quality. There have been extensive studies on the activities of antioxidant enzymes and the gene regulation, however, more researches will be required in near future to elucidate the most effective antioxidant enzymes to induce highest freezing tolerance in a crop plant in a transformation process or a breeding program.

39 citations

Journal ArticleDOI
Abstract: In Mexico pineapple processing produces industrial residues with a high concentration of dietary fibre. The aim of this study was to quantify the constituents of the fibrous residues from the industrial processing of pineapples which exhibited low concentrations of lignin.

34 citations

Journal ArticleDOI
Abstract: The land spreading of olive mill wastewater (OMW) derived from olive oil production can represent a suitable option to enrich and maintain agriculture soils under south Mediterranean climates. Therefore, OMW spreading field may represent a low cost contribution to crop fertilization and soil amendment. The main objective of this study was to investigate the long-term effects of raw OMW application on soil macronutrients and phenolic compounds dynamics. The results showed that regular application of three doses: 50, 100 and 200 m3·ha-1 of OMW for nine successive years increased the soil electrical conductivity significantly (p ≤ 0.05%) with the increase of OMW rates at the depth 0 - 20 cm. The pH variations were not detected after ten months of the spreading date. Furthermore, soil sodium adsorption ratio (SAR) and exchangeable sodium percentage (ESP) values were substantially affected by OMW salinity. The soil organic matter (SOM) increased from 0.068% observed for the control sample to 0.2%, 0.34% and 0.48%, respectively, with the increase of OMW rate in the top layer (0 - 20 cm). The potassium, phosphorus and nitrogen increased gradually with the OMW application dose. The Ca2+ contents on soil decreased with the spreading of OMW rate, as referred to control. In addition, the phenolic compounds variations were not proportional to doses applied and its levels remained high as compared with the control essentially on top layers (0 - 40 cm). This practice should be beneficial to organic farming and is an alternative solution to direct spreading of raw OMW on soil.

34 citations

Network Information
Related Journals (5)
Natural Product Communications

5.8K papers, 47.3K citations

77% related
Communications in Soil Science and Plant Analysis

8.7K papers, 145.2K citations

73% related
Chemosphere

36.4K papers, 1.2M citations

73% related
Industrial Crops and Products

9.7K papers, 278.9K citations

73% related
Journal of Environmental Sciences-china

8.2K papers, 139.6K citations

73% related
Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
20219
202011
201916
201816
201716
201628