scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Agricultural Chemistry and Environment in 2020"


Journal ArticleDOI
TL;DR: In this paper, the chemical and biological properties of 12 soils from apple orchards in Aomori and Nagano Prefectures were compared under four types of management systems, namely, natural conditions, with no cultivation, fertilizers, or pesticides; organic farming methods, using organic materials and pesticides approved by the Japanese Agricultural======Standard organic certification system; hybrid farming methods using a mix of======organic and chemical fertilizers; and conventional farming, using chemical======fertilizers and pesticides.
Abstract: Apples in Japan are generally cultivated under management systems that use chemical fertilizers and synthetic chemical pesticides. However, the continuous use of these fertilizers and pesticides damages the soil environment and reduces the number of soil microorganisms. In this study, we compared the chemical and biological properties of 12 soils from apple orchards in Aomori and Nagano Prefectures under four types of management systems, namely, natural conditions, with no cultivation, fertilizers, or pesticides; organic farming methods, using organic materials and pesticides approved by the Japanese Agricultural Standard organic certification system; hybrid farming methods, using a mix of organic and chemical fertilizers; and conventional farming, using chemical fertilizers and pesticides. Soil total carbon (TC), total nitrogen (TN), total phosphorus (TP), nitrate-nitrogen (NO? 3), and available phosphoric acid (SP) contents were generally found to be the highest where organic farming methods were used. Similarly, bacterial biomass, nitrification (N) circulation activity, ammonia (NH+ 4) oxidation activity, nitrite (NO? 2) oxidation activity, and phosphoric (P) circulation activity were the highest under organic farming, especially in comparison with conventional farming. This study indicated that the differences in apple sugar content, acidity, and sugar/acidity ratio between different orchard management systems were due to different soil conditions, and soil conditions under organic farming management system in apple cultivation increased bacterial biomass while enhancing N and P circulation activity and high TC. On the other hand, the soil of conventional farming has the lowest total number of bacterial biomass and lowest material cycle such as N and P circulation activity. Analysis of the chemical and biological properties of these orchard soils indicated that soil conditions under organic farming management are the most suitable for increasing microbial numbers and enhancing N and P circulation activity.

7 citations


Journal ArticleDOI
TL;DR: In this article, the effects of the application of organic and chemical fertilizers on the plant growth of paddy fields, in addition to their effects on the chemical and biological properties of the soil were investigated.
Abstract: Currently, the majority of paddy fields in Japan are grown using chemical fertilizers and synthetic chemical pesticides, since chemical fertilizers can provide the nutrients necessary for plant growth. However, there are concerns regarding the environmental impact of chemical fertilizer and pesticides production, such as reduction of soil microorganisms and water pollution due to the runoff of fertilizer components from the soil caused by excessive fertilizer application. In this study, we investigated the effects of the application of organic and chemical fertilizers on the plant growth of paddy fields, in addition to their effects on the chemical and biological properties of the soil. The panicle numbers of rough and brown rice, the 1000-grain weight of the rough and brown rice, and the percentages of ripened grains were significantly higher in paddy soils grown with organic fertilizers than in those grown with chemical fertilizers. In addition, the total carbon (TC) contents and pH values were significantly higher in the soils of paddy fields grown with organic fertilizers. Furthermore, the soils of paddy fields grown with organic fertilizers exhibited greater bacterial biomasses, N circulation activity, and P circulation activity than the soils of paddy fields grown using chemical fertilizers, although the differences were not significant. In this study, the difference in plant growth was appeared in fertilizer application such as organic and chemical fertilizers. It was indicated that the organic fertilizer and pesticide reduction management increased the soil bacterial biomass and activated the material cycle such as N circulation activity.

6 citations


Journal ArticleDOI
TL;DR: In this paper, a greenhouse study was conducted to gain a better understanding of the properties and effects of a recently developed pelletized papermill biosolids (PPB) on bell pepper (Capsicum annuum L.) and soil.
Abstract: The US is one of the leading global producers of paper industry with approximately 24 percent of the share of world paper supply. Despite diversity of the feedstock and production methods, C rich papermill biosolids (PB) is a major byproduct of paper production process. Landfilling is the predominant method of PB management. Increasing landfill cost and its potential environmental consequences have incentivized research and development efforts to find beneficial uses for PB. This sensible option reduces the overall paper production costs and increases environmental sustainability. Pelletization of PB increases its marketability by reducing transportation costs. This greenhouse study was conducted to gain a better understanding of the properties and effects of a recently developed pelletized papermill biosolids (PPB) on bell pepper (Capsicum annuum L.) and soil. Urea and PPB were each applied at four total N rates equivalent to 45, 90, 135, and 180 kg N ha﹣1 and an additional control treatments of 0 N was included. The total C and N concentration in this PPB were 379 and 14 g·kg﹣1 respectively and its C:N ratio was 27.2. Nitrogen treatment significantly (P ≤ 0.0839) influenced pepper height, dry biomass, N concentration, and N uptake. Plant height ranged from 31.2 to 44.4 cm; 135 kg·ha﹣1 urea-N and PPB-N produced the tallest and shortest plants respectively. Dry biomass of the pepper that did not receive any N, those treated with urea-N or PPB-N were 5.3, 5.7 - 7.5, and 5.9 - 6.5 g·plant﹣1 respectively. Nitrogen concentration in control treatment (0 N) was 36.4 g·kg﹣1 and that of pepper treated with any N ranged from 32.0 - 40.7 g·kg﹣1. There was an inverse numerical, albeit not always statistically significant, relationship between PPB rate and plant N concentration. Generally, pepper treated with urea removed significantly more N from soil than control or PPB treated pepper. Nitrogen uptake by plants that did not receive any N and those amended with urea or PPB were 194, 229 - 270, and 155 - 164 mg·plant﹣1 respectively. Pepper N uptake and concentration data indicate that higher rates of PPB resulted in immobilization of native soil and PPB-N due to its wide C:N ratio (27.2). Nitrogen treatment significantly influenced soil pH, SOM, total C and N (P > 0.1). Soil organic matter and total C in post-harvest soil samples were 17.4 - 19.4 and 21.9 - 35.0 g·kg﹣1 respectively. The observed increase in soil total C and SOM highlights the potential beneficial use of PPB as a means to improve soil health and sequester C in soil. Narrowing the C:N ratio of PPB, by coapplication or incorporation of the mineral N into the pellets will make it an attractive organic N fertilizer.

4 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigated the effect of organic and chemical fertilizer application on the growth and yield of norabona during the growing season from September 2019 to May 2020, and found that the higher TC, TN, and C/N ratio in organic fertilizer treated soil appeared to increase the bacterial biomass, leading to enhanced nutrient circulation via N and P circulation activity.
Abstract: Norabona is generally cultivated in Japan under management systems that use chemical fertilizers and synthetic chemical pesticides. However, the continuous use of these fertilizers and pesticides damages the soil environment and reduces the number of soil microorganisms. There has been little research investigating the effect of organic and chemical fertilizer applications on soil biochemistry and the growth and yield of norabona. In this study, we investigated the effect of organic and chemical fertilizer application on these factors during the norabona growing season from September 2019 to May 2020. Leaf length, shoot height, and shoot width were significantly higher under organic fertilizer management in the early stage of cultivation (in March) than under chemical fertilizer management. However, there was no significant difference between treatments for these growth parameters in later months, nor for any other parameters. Soil TN, and TP contents were significantly higher in the organic fertilizer treatment after harvest than prior to cultivation or after the chemical fertilizer treatment. In addition, soil TC, and volumetric water content were significantly higher in the organic fertilizer treatment than in chemical fertilizer treatment. The higher TC, TN, and C/N ratio in organic fertilizer treated soil appeared to increase the bacterial biomass, leading to enhanced nutrient circulation via N and P circulation activity, producing a rich soil environment with active soil microorganisms.

4 citations


Journal ArticleDOI
TL;DR: It was concluded that the ethanolic extract of oregano and rosemary present antifungal activity against several yeasts tested, thus proving that these plant species must be carefully evaluated, aiming at a potential for use as an antimicrobial agent.
Abstract: Origanum vulgare L. (oregano) and Rosmarinus officinalis L. (rosemary) are vegetal species belonging to the family Lamiaceae, popularly known as oregano and rosemary. Aromatic plants are used in the treatment and prevention of diseases and in the culinary as functional food in the preparation and conservation of foods. In the chemical composition of oregano and rosemary are present bioactive compounds with antimicrobial, antioxidant and flavoring effect. Several reports in the literature have presented the chemical composition and biological activity of the essential oils of oregano and rosemary. However, few studies have been carried out regarding the chemical composition and biological potential of the aqueous and ethanolic extracts of Origanum vulgare L. and Rosmarinus officinalis L. Evidencing a need to investigate the chemical composition and antifungal activity of these extracts. The objective of the study was to evaluate the bioactive compounds and antifungal activity of the aqueous and ethanolic extract of Origanum vulgare L. and Rosmarinus officinalis L. The aqueous and ethanolic extracts of Origanum vulgare L. and Rosmarinus officinalis L. present in the chemical composition phenolic acids and flavonoids. The antifungal test of the aqueous and ethanolic extract of Origanum vulgare L. and Rosmarinus officinalis L. presented antifungal potential against Candida globosa, Cryptococcus laurentii, Trichosporum assai, Rhodotorula sp., Candida albicans, Kodamaea ohmeri, Saccharomyces and Geotrichum. According to the results obtained in this study, it was concluded that the ethanolic extract of oregano and rosemary present antifungal activity against several yeasts tested, thus proving that these plant species must be carefully evaluated, aiming at a potential for use as an antimicrobial agent.

4 citations


Journal ArticleDOI
TL;DR: In this paper, the effect of organic and chemical fertilizer application on growth, yield, and quality of small-sized (cherry) tomatoes was investigated, and the results indicated that appropriate controls such as TC, total phosphorus (TP), total potassium (TK), available phosphoric (SP) contents, C/N ratio, and pH were significantly higher under organic fertilizer than chemical fertilizer.
Abstract: Tomatoes in Japan are generally cultivated under management systems that use chemical fertilizers and synthetic chemical pesticides. However, the continuous use of these fertilizers and pesticides damages the soil environment and reduces the number of soil microorganisms. Organic farming has a relatively low environmental impact compared to conventional farming techniques, but typically has lower and more unstable yields. In this study, we investigated the effect of organic and chemical fertilizer application on growth, yield, and quality of small-sized (cherry) tomatoes. Cherry tomatoes were cultivated using organic and chemical organic fertilizers. Average weight and lateral diameter were significantly higher under organic fertilizer than under chemical fertilizer. In addition, shoot dry weight was significantly higher under organic fertilizer than chemical fertilizer. Lycopene content was significantly higher under organic fertilizer than chemical fertilizer. The total carbon (TC), total phosphorus (TP), total potassium (TK), available phosphoric (SP) and exchangeable potassium (SK) contents, C/N ratio, and pH were significantly higher under organic fertilizer than chemical fertilizer. Bacterial biomass, nitrite (NO? 2-N) oxidation activity, nitrification (N) circulation activity, and phosphoric (P) circulation were higher under organic fertilizer than chemical fertilizer. From these results, the study indicates that appropriate controls such as TC, total nitrogen (TN), and C/N ratio of organic fertilizer increased microbial biomass and enhanced nutrient circulation such as N circulation activity and P circulation activity. These results can be used to improve current organic farming practices and promote soil conservation.

4 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigated the effect of grass and food waste co-digestion on the biogas yield and clarified how the addition of grass enhances the AD performance.
Abstract: Management of grasslands in Ghana has become so poor that most rural communities result in bushfires that cause a lot of environmental challenges. Grass could be used for biogas generation. This study investigated the effect of grass and food waste co-digestion on the biogas yield and clarified how the addition of grass enhances the AD performance. Grass (GR) mixed with the co-substrate food waste (FW) was then evaluated under anaerobic conditions for the production of biogas (methane). Five laboratory-scale reactors, R1 (100% FW, 0% GR), R2 (75% FW, 25% GR), R3 (50% FW, 50% GR), R4 (25% FW, 75% GR) and R5 (0% FW, 100% GR) were set up with different proportions of grass and food waste which had 8% total solid concentration. Digestion was carried out for twenty (20) days at room temperature, 35°C ± 2°C. The biogas yield in the R1, R2, R3, R4, R5 was 805, 840, 485, 243 and 418 mL respectively. Food waste only produced 805 mL and grass only produced 418 mL of biogas. Food waste only produced 50% more biogas than grass. However, co-digestion at 75% FW, 25% resulted in 6% more biogas than food waste only.

3 citations


Journal ArticleDOI
TL;DR: In this paper, the soil properties of 139 agricultural orchard fields (apple, grape, tea, and others) were analyzed using the soil fertility index, and the average values of total carbon (TC), total nitrogen (TN), total phosphorus (TP), and total potassium (TK) were compared.
Abstract: Soil samples from 139 agricultural orchard fields (apple, grape, tea, and others) were analyzed using the soil fertility index. From these samples, an orchard field database was constructed and the soil properties between orchard, upland, and paddy fields were compared. The average value of bacterial biomass in the orchard fields was 7.4 × 108 cells/g-soil, ranging from not detected (lower than 6.6 × 106 cells/g-soil) to 7.7 × 109 cells/g-soil. The average values of total carbon (TC), total nitrogen (TN), total phosphorus (TP), and total potassium (TK), were 24,000 mg/kg (2670 to 128,100 mg/kg), 1460 mg/kg (133 to 6400 mg/kg), 1030 mg/kg (142 to 5362 mg/kg), and 5370 mg/kg (1214 to 18,155 mg/kg), respectively. The C/N and C/P ratios were 19 (3 to 85) and 27 (2 to 101), respectively. Soil properties of the orchard fields were compared with those of the upland and the paddy fields. The average value of bacterial biomass in the orchard fields was almost the same as that in the upland fields (8.0 × 108 cells/g-soil), but the number was lower than that in the paddy fields (12.9 × 108 cells/g-soil). The average values of TC and TN in the orchard fields fell between those in the upland fields (TC: 33,120 mg/kg, TN: 2010 mg/kg) and the paddy fields (TC: 15,420 mg/kg, TN: 1080 mg/kg). The relationship between the bacterial biomass and TC in the orchard fields resembled that in the upland fields. A suitable soil condition for the orchard fields was determined as TC: ≥25,000 mg/kg, TN: ≥1500 mg/kg, TP: ≥900 mg/kg and TK: 2500 - 10,000 mg/kg. These recommended values will be effective for the improvement of the soil quality in the orchard fields by enhancing the number and activities of microorganisms.

1 citations


Journal ArticleDOI
TL;DR: In this article, the satellite derived precipitation datasets are spatially analyzed and compared with the observed precipitation data provided by Bangladesh Meteorological Department (BMD) at the time of Cyclone FANI.
Abstract: Given that precipitation is a major component of the earth’s water and energy cycles, reliable information on the monthly spatial distribution of precipitation is also crucial for climate science, climatological water-resource research studies, and for the evaluation of regional model simulations. In this paper, four satellite derived precipitation datasets: Climate Prediction Center MORPHING (CMORPH), Tropical Rainfall Measuring Mission (TRMM), the Precipitation Estimation Algorithm from Remotely-Sensed Information using an Artificial Neural Network (PERSIANN), and the global Satellite Mapping of Precipitation (GSMaP) are spatially analyzed and compared with the observed precipitation data provided by Bangladesh Meteorological Department (BMD). For this study, the different precipitations data sets are spatially analyzed from 2nd May 2019 to 4th May 2019 at the time of Cyclone “FANI”. It is found that the satellite derived precipitation datasets are reasonably matched with the observed but slightly different.

1 citations


Journal ArticleDOI
TL;DR: In this article, the authors analyzed steppe soils of a small industrialized city with moderate anthropogenic impact for example Krasny Kut, Saratov region were analyzed to ascertain their ecological and functional state.
Abstract: Steppe soils of a small industrialized city with moderate anthropogenic impact for example Krasny Kut, Saratov region were analysed to ascertain their ecological and functional state. In the course of this work, the concentration of heavy metals (Zn, Cu, Pb, Ni, Cr and Cd) was determined in the soil samples, including the hazard coefficient (Kо) and the total contamination coefficient (Zc). Magnetic susceptibility, magnetic coefficient (Kmag), thermomagnetic effect (dk) of the soil samples were analysed together with the activity of soil enzymes (dehydrogenases, catalases, peroxidases and invertases). Using ecological and geochemical analytical methods, a widespread excess of maximum permissible concentration (MPC) of mobile forms Ni, Pb, Cu and Zn was recorded in the soil samples of Krasny Kut, and a single excess of MPC was observed for Cr and Cd. According to Zc indicator values, 4 samples were classified as soils with moderately dangerous levels of contamination and 2 samples with dangerous levels of contamination. Using petromagnetic analysis, a few samples were observed to contain a moderate amount of introduced technogenic magnetic particles and one sample with a hazardous amount of introduced technogenic magnetic particles. Medium, high and very high levels of dehydrogenase, catalase, peroxidase and invertase activities were recorded in the soil samples, indicating the absence of ecotoxicants inhibiting the enzymes. The observed peculiarities in the ecological and functional state of soils, representative of the steppe zone of the Eastern part of the European territory of Russia will be required for monitoring, reducing and forecasting the anthropogenic burden on soil ecosystems.

1 citations


Journal ArticleDOI
TL;DR: In this article, the authors used spectroscopy in the UV-Vis and NIR ranges of light for the characterization and evaluation of the characteristics and optical modifications that occur during life, the processes for the preparation of some food in order to modify their characteristics or eliminate Micro-organisms that can affect their quality and shelf life.
Abstract: Spectroscopy in the UV-Vis and NIR ranges of light provides great convenience for the characterization and evaluation of the characteristics and optical modifications that occur during life, the processes for the preparation of some food in order to modify their characteristics or eliminate Micro-organisms that can affect their quality and shelf life, work is carried out at elevated temperatures, even above 100°C. The study has made it possible to identify changes in the Absorbance, Transmittance and Optical Intensity of Apis mellifera honey from four different botanical sources and States of the Mexican Republic: Citrus (Citrus) from the state of Veracruz, Mangle (Rizophora mangle) of the Pacific zone of the state of Sinaloa, Polyfloralis of the state of Morelos and Polyfloralis of the state of Tabasco.