scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Applied Physics in 1997"


Journal ArticleDOI
TL;DR: In this article, the piezoelectric properties of relaxor based ferroelectric single crystals, such as Pb(Zn1/3Nb2/3)O3 and PbTiO3, were investigated for electromechanical actuators.
Abstract: The piezoelectric properties of relaxor based ferroelectric single crystals, such as Pb(Zn1/3Nb2/3)O3–PbTiO3 and Pb(Mg1/3Nb2/3)O3–PbTiO3 were investigated for electromechanical actuators. In contrast to polycrystalline materials such as Pb(Zr,Ti)O3, morphotropic phase boundary compositions were not essential for high piezoelectric strain. Piezoelectric coefficients (d33’s)>2500 pC/N and subsequent strain levels up to >0.6% with minimal hysteresis were observed. Crystallographically, high strains are achieved for 〈001〉 oriented rhombohedral crystals, although 〈111〉 is the polar direction. Ultrahigh strain levels up to 1.7%, an order of magnitude larger than those available from conventional piezoelectric and electrostrictive ceramics, could be achieved being related to an E-field induced phase transformation. High electromechanical coupling (k33)>90% and low dielectric loss <1%, along with large strain make these crystals promising candidates for high performance solid state actuators.

3,766 citations


Journal ArticleDOI
TL;DR: A large amount of work world wide has been directed towards obtaining an understanding of the fundamental characteristics of porous Si as mentioned in this paper, and the key importance of crystalline Si nanostructures in determining the behaviour of porous si is highlighted.
Abstract: A large amount of work world-wide has been directed towards obtaining an understanding of the fundamental characteristics of porous Si. Much progress has been made following the demonstration in 1990 that highly porous material could emit very efficient visible photoluminescence at room temperature. Since that time, all features of the structural, optical and electronic properties of the material have been subjected to in-depth scrutiny. It is the purpose of the present review to survey the work which has been carried out and to detail the level of understanding which has been attained. The key importance of crystalline Si nanostructures in determining the behaviour of porous Si is highlighted. The fabrication of solid-state electroluminescent devices is a prominent goal of many studies and the impressive progress in this area is described.

2,371 citations


Journal ArticleDOI
TL;DR: In this article, a methodology is introduced for predicting the effective thermal conductivity of arbitrary particulate composites with interfacial thermal resistance in terms of an effective medium approach combined with the essential concept of Kapitza thermal contact resistance.
Abstract: A methodology is introduced for predicting the effective thermal conductivity of arbitrary particulate composites with interfacial thermal resistance in terms of an effective medium approach combined with the essential concept of Kapitza thermal contact resistance. Results of the present model are compared to existing models and available experimental results. The proposed approach rediscovers the existing theoretical results for simple limiting cases. The comparisons between the predicted and experimental results of particulate diamond reinforced ZnS matrix and cordierite matrix composites and the particulate SiC reinforced Al matrix composite show good agreement. Numerical calculations of these different sets of composites show very interesting predictions concerning the effects of the particle shape and size and the interfacial thermal resistance.

1,638 citations


Journal ArticleDOI
TL;DR: The role of implantation defects, the effect of annealing, concentration dependent effects, and optical activation are discussed and compared for different Er-doped thin film photonic materials.
Abstract: Erbium doped materials are of great interest in thin film integrated optoelectronic technology, due to their Er3+ intra-4f emission at 1.54 μm, a standard telecommunication wavelength. Er-doped dielectric thin films can be used to fabricate planar optical amplifiers or lasers that can be integrated with other devices on the same chip. Semiconductors, such as silicon, can also be doped with erbium. In this case the Er may be excited through optically or electrically generated charge carriers. Er-doped Si light-emitting diodes may find applications in Si-based optoelectronic circuits. In this article, the synthesis, characterization, and application of several different Er-doped thin film photonic materials is described. It focuses on oxide glasses (pure SiO2, phosphosilicate, borosilicate, and soda-lime glasses), ceramic thin films (Al2O3, Y2O3, LiNbO3), and amorphous and crystalline silicon, all doped with Er by ion implantation. MeV ion implantation is a technique that is ideally suited to dope these materials with Er as the ion range corresponds to the typical micron dimensions of these optical materials. The role of implantation defects, the effect of annealing, concentration dependent effects, and optical activation are discussed and compared for the various materials.

1,089 citations


Journal ArticleDOI
TL;DR: In this article, the elastic constants for zinc-blende and wurtzite were obtained from density-functional-theory calculations utilizing ab initio pseudopotentials and plane-wave expansions.
Abstract: Elastic constants for zinc-blende and wurtzite AlN, GaN, and InN are obtained from density-functional-theory calculations utilizing ab initio pseudopotentials and plane-wave expansions Detailed comparisons are made with the available measured values and with results obtained in previous theoretical studies These comparisons reveal clear discrepancies between the different sets of elastic constants which are further highlighted by examining derived quantities such as the perpendicular strain in a lattice-mismatched epitaxial film and the change in the wurtzite c/a ratio under hydrostatic pressure Trends among results for the three compounds are also examined as well as differences between results for the zinc-blende and wurtzite phases

952 citations


Journal ArticleDOI
TL;DR: In this paper, a bilayer light emitting diodes made with organically capped CdSe(CdS) core/shell type semiconductor nanocrystals and an electroluminescent (EL) semiconducting polymer [poly(p-phenylenevinylene) or PPV] was reported.
Abstract: We report experiments on bilayer light emitting diodes made with organically capped CdSe(CdS) core/shell type semiconductor nanocrystals and an electroluminescent (EL) semiconducting polymer [poly(p-phenylenevinylene) or PPV]. The devices emit from red to green with external quantum efficiencies of up to 0.22% at brightnesses of 600 cd/m2 and current densities of 1 A/cm2. They have operating voltages as low as 4 V and lifetimes under constant current flow of hundreds of hours. Most of these numbers are significant improvements over similar devices made with CdSe nanocrystals. The devices show either nanocrystal-only EL or a combination of nanocrystal and PPV EL, depending on nanocrystal layer thickness. The nanocrystal EL is dependent on nanocrystal size. Some devices show a voltage dependent spectral output. The spectral output is consistent with a field dependent electron range in the nanocrystal layer limited by carrier trapping.

912 citations


Journal ArticleDOI
TL;DR: In this paper, a non-equilibrium Green function theory is formulated to meet the three main challenges of high bias quantum device modeling: selfconsistent charging, incoherent and inelastic scattering, and band structure.
Abstract: Non-equilibrium Green function theory is formulated to meet the three main challenges of high bias quantum device modeling: self-consistent charging, incoherent and inelastic scattering, and band structure. The theory is written in a general localized orbital basis using the example of the zinc blende lattice. A Dyson equation treatment of the open system boundaries results in a tunneling formula with a generalized Fisher-Lee form for the transmission coefficient that treats injection from emitter continuum states and emitter quasi-bound states on an equal footing. Scattering is then included. Self-energies which include the effects of polar optical phonons, acoustic phonons, alloy fluctuations, interface roughness, and ionized dopants are derived. Interface roughness is modeled as a layer of alloy in which the cations of a given type cluster into islands. Two different treatments of scattering; self-consistent Born and multiple sequential scattering are formulated, described, and analyzed for numerical t...

800 citations


Journal ArticleDOI
TL;DR: In this paper, the orientation distribution of a textured polycrystalline material has been traditionally determined from a few individual pole figures of lattice planes hkl, measured by x-ray or neutron diffraction.
Abstract: The orientation distribution of a textured polycrystalline material has been traditionally determined from a few individual pole figures of lattice planes hkl, measured by x-ray or neutron diffraction A new method is demonstrated that uses the whole diffraction spectrum, rather than extracted peak intensities, by combining the orientation distribution calculation with the crystallographic Rietveld method The feasibility of the method is illustrated with time-of-flight neutron diffraction data of experimentally deformed polycrystalline calcite It is possible to obtain quantitative information on texture, crystal structure, microstructure, and residual stress from highly incomplete pole figures and from regions of the diffraction spectrum containing many overlapping peaks The approach provides a key for quantitative texture analysis of low symmetry compounds and of composites with complicated diffraction spectra

744 citations


Journal ArticleDOI
TL;DR: In this article, heat transport in 20-300 nm-thick dielectric films is characterized in the temperature range of 78-400 K using the 3-ω method.
Abstract: Heat transport in 20–300 nm thick dielectric films is characterized in the temperature range of 78–400 K using the 3ω method. SiO2 and SiNx films are deposited on Si substrates at 300 °C using plasma enhanced chemical vapor deposition (PECVD). For films >100 nm thick, the thermal conductivity shows little dependence on film thickness: the thermal conductivity of PECVD SiO2 films is only ∼10% smaller than the conductivity of SiO2 grown by thermal oxidation. The thermal conductivity of PECVD SiNx films is approximately a factor of 2 smaller than SiNx deposited by atmospheric pressure CVD at 900 °C. For films <50 nm thick, the apparent thermal conductivity of both SiO2 and SiNx films decreases with film thickness. The thickness dependent thermal conductivity is interpreted in terms of a small interface thermal resistance RI. At room temperature, RI∼2×10−8 K m2 W−1 and is equivalent to the thermal resistance of a ∼20 nm thick layer of SiO2 .

679 citations


Journal ArticleDOI
TL;DR: The 3-V ternaries and quaternaries (AlGaIn)(AsSb) lattice matched to GaSb is a promising material for high speed electronic and long wavelength photonic devices.
Abstract: Recent advances in nonsilica fiber technology have prompted the development of suitable materials for devices operating beyond 155 mu m The III-V ternaries and quaternaries (AlGaIn)(AsSb) lattice matched to GaSb seem to be the obvious choice and have turned out to be promising candidates for high speed electronic and long wavelength photonic devices Consequently, there has been tremendous upthrust in research activities of GaSb-based systems As a matter of fact, this compound has proved to be an interesting material for both basic and applied research At present, GaSb technology is in its infancy and considerable research has to be carried out before it can be employed for large scale device fabrication This article presents an up to date comprehensive account of research carried out hitherto It explores in detail the material aspects of GaSb starting from crystal growth in bulk and epitaxial form, post growth material processing to device feasibility An overview of the lattice, electronic, transport, optical and device related properties is presented Some of the current areas of research and development have been critically reviewed and their significance for both understanding the basic physics as well as for device applications are addressed These include the role of defects and impurities on the structural, optical and electrical properties of the material, various techniques employed for surface and bulk defect passivation and their effect on the device characteristics, development of novel device structures, etc Several avenues where further work is required in order to upgrade this III-V compound for optoelectronic devices are listed It is concluded that the present day knowledge in this material system is sufficient to understand the basic properties and what should be more vigorously pursued is their implementation for device fabrication (C) 1997 American Institute of Physics

655 citations


Journal ArticleDOI
TL;DR: In this paper, transmission electron microscopy measurements of implantation damage were combined with B diffusion experiments using doping marker structures grown by molecular-beam epitaxy (MBE) to study the mechanisms of TED.
Abstract: Implanted B and P dopants in Si exhibit transient enhanced diffusion (TED) during annealing which arises from the excess interstitials generated by the implant. In order to study the mechanisms of TED, transmission electron microscopy measurements of implantation damage were combined with B diffusion experiments using doping marker structures grown by molecular-beam epitaxy (MBE). Damage from nonamorphizing Si implants at doses ranging from 5×1012 to 1×1014/cm2 evolves into a distribution of {311} interstitial agglomerates during the initial annealing stages at 670–815 °C. The excess interstitial concentration contained in these defects roughly equals the implanted ion dose, an observation that is corroborated by atomistic Monte Carlo simulations of implantation and annealing processes. The injection of interstitials from the damage region involves the dissolution of {311} defects during Ostwald ripening with an activation energy of 3.8±0.2 eV. The excess interstitials drive substitutional B into electric...

Journal ArticleDOI
TL;DR: In this paper, the authors studied the dependence of the absorption edge and the refractive index of wurtzite AlxGa1−xN films on temperature and composition using transmission and photothermal deflection spectroscopy.
Abstract: We have studied the dependence of the absorption edge and the refractive index of wurtzite AlxGa1−xN films on temperature and composition using transmission and photothermal deflection spectroscopy. The Al molar fraction of the AlxGa1−xN films grown by plasma induced molecular beam epitaxy was varied through the entire range of composition (0⩽x⩽1). We determined the absorption edges of AlxGa1−xN films and a bowing parameter of 1.3±0.2 eV. The refractive index in the photon energy range between 1 and 5.5 eV and temperatures between 7 and 295 K was deduced from the interference fringes. The static refractive index n(0) changed from 2.29 for GaN to 1.96 for AlN at room temperature. A variation of temperature from 295 to 7 K resulted in a decrease of refractive index (at photon energies close to the band gap) by 0.05±0.01 and in an energy shift of the absorption edge of about 64±5 meV independent of the Al content of the films. Using the Kramers–Kronig dispersion relation and an approximation for the dispersion coefficient for photon energies near the band gap, the refractive index could be described as a function of photon energy, Al content, and temperature.

Journal ArticleDOI
TL;DR: In this paper, the structural, electrical, and optical properties of aluminum doped zinc oxide (AZO) films are investigated in terms of the preparation conditions, such as the Al2O3 content in the target, rf power, substrate temperature and working pressure.
Abstract: Aluminum doped zinc oxide (AZO) films are prepared by rf magnetron sputtering on glass or Si substrates using specifically designed ZnO targets containing different amount of Al2O3 powder as the Al doping source. The structural, electrical, and optical properties of the AZO films are investigated in terms of the preparation conditions, such as the Al2O3 content in the target, rf power, substrate temperature and working pressure. The crystal structure of the AZO films is hexagonal wurtzite. The orientation, regardless of the Al content, is along the c axis perpendicular to the substrate. The doping concentration in the film is 1.9 at. % for 1 wt % Al2O3 target, 4.0 at. % for 3 wt % Al2O3 target, and 6.2 at. % for 5 wt % Al2O3 target. The resistivity of the AZO film prepared with the 3 wt % Al2O3 target is ∼4.7×10−4 Ω cm, and depends mainly on the carrier concentration. The optical transmittance of a 1500-A-thick film at 550 nm is ∼90%. The optical band gap depends on the Al doping level and on the microstr...

Journal ArticleDOI
TL;DR: In this paper, phase jumps related to the interface between the matrix and the reinforcing phases of the composites are detected even when these phases show very similar x-ray attenuation, illustrating the potential of the technique for assessing damage in materials with improved resolution and sensitivity.
Abstract: The novel possibilities of phase feature detection in radiography at a third generation synchrotron radiation source are used to image, both in projection and in computed tomography, a cracked silicon single crystal and metal matrix composites strained in tension. Through an instrumentally very simple technique, based on Fresnel diffraction, phase jumps related to the interface between the matrix and the reinforcing phases of the composites are detected even when these phases show very similar x-ray attenuation. Strain-induced cracks with openings below the micrometer range are also visible through the phase modulation they introduce, illustrating the potential of the technique for assessing damage in materials with improved resolution and sensitivity.

Journal ArticleDOI
TL;DR: In this article, it was shown that the resolving power of aperture NFO microscopes, 30-50 nm, is of genuine NFO origin but can be heavily obscured by the artifact.
Abstract: Near-field optical (NFO) microscopes with an auxiliary gap width regulation (shear force, tunneling) may produce images that represent the path of the probe rather than optical properties of the sample. Experimental and theoretical evidence leads us to the conclusion that many NFO results reported in the past might have been affected or even dominated by the resulting artifact. The specifications derived from such results for the different types of NFO microscopes used therefore warrant reexamination. We show that the resolving power of aperture NFO microscopes, 30–50 nm, is of genuine NFO origin but can be heavily obscured by the artifact.

Journal ArticleDOI
TL;DR: In this article, the authors show that the Fowler-Nordheim tunneling theory cannot account for the temperature dependence, the thickness dependence, or the current magnitude of the current-voltage characteristics of indium-tinoxide/poly(phenylene vinylene)/Al light emitting diodes.
Abstract: Current–voltage, impedance, and transient conductance measurements have been carried out on indium-tin-oxide/poly(phenylene vinylene)/Al light emitting diodes. In these devices injection and transport is expected to be dominated by positive carriers. Fowler–Nordheim tunneling theory cannot account for the temperature dependence, the thickness dependence, or the current magnitude of the current–voltage characteristics. Space-charge limited current theory with an exponential distribution of traps is however in extremely good agreement with all of the recorded current–voltage results in the higher applied bias regime (approximately 0.7⩽V/d⩽1.6×106 V cm−1). This gives a trap density Ht of 5(±2)×1017 cm−3 and the product of μNHOMO of between 1014 and 5×1012 cm−1 V−1 s−1. Assuming NHOMO is 1020 cm−3 gives an effective positive carrier mobility between 10−6 and 5×10−8 cm2 V−1 s−1. The characteristic energy Et of the exponential trap distribution is 0.15 eV at higher temperatures (190⩽T⩽290 K), but this decreases...

Journal ArticleDOI
TL;DR: In this paper, the generation of a high amplitude shock wave by laser plasma in a water confinement regime was investigated for an incident 25-30 ns/40 J/λ=1.064μm pulsed laser beam.
Abstract: Generation of a high amplitude shock wave by laser plasma in a water confinement regime has been investigated for an incident 25–30 ns/40 J/λ=1.064 μm pulsed laser beam. Experimental measurements of temporal and spatial profiles of induced shock waves for this regime of laser shock processing of materials were performed using a velocimetry interferometer system for any reflector system. Above a 10 GW/cm2 laser intensity threshold, a saturation of the peak pressure is shown to occur while the pressure pulse duration is reduced by parasitic plasma occurring in the confining water. The observation of the interaction zone with a fast camera system shows that this breakdown plasma, which mainly occurs at the very surface of the water rather than within the water volume, limits the efficiency of the process. This plasma absorbs the incident laser energy, and the power density reaching the target gradually decreases with increasing power densities while the shock-wave duration is correspondingly reduced. Both pr...

Journal ArticleDOI
TL;DR: In this paper, the optical absorption edge and the near-absorption edge characteristics of undoped ZnO films grown by laser ablation on various substrates have been investigated.
Abstract: The optical absorption edge and the near-absorption edge characteristics of undoped ZnO films grown by laser ablation on various substrates have been investigated. The band edge of films on C [(0001)] and R-plane [(1102)] sapphire, 3.29 and 3.32 eV, respectively, are found to be very close to the single crystal value of ZnO (3.3 eV) with the differences being accounted for in terms of the thermal mismatch strain using the known deformation potentials of ZnO. In contrast, films grown on fused silica consistently exhibit a band edge ∼0.1 eV lower than that predicted using the known deformation potential and the thermal mismatch strains. This behavior is attributed to the small grain size (50 nm) realized in these films and the effect of electrostatic potentials that exist at the grain boundaries. Additionally, the spread in the tail (E0) of the band edge for the different films is found to be very sensitive to the defect structure in the films. For films grown on sapphire substrates, values of E0 as low as ...

Journal ArticleDOI
TL;DR: In this paper, the in-plane component of the mosaic misorientation can be determined from the rocking curves of substrate normal and off-axis reflections, and the differences in the mosaic structure of these films are attributed to the crystallographic nature of their lattice dislocations.
Abstract: Epitaxial films having a large lattice mismatch with their substrate invariably form a mosaic structure of slightly misoriented sub-grains. The mosaic structure is usually characterized by its x-ray rocking curve on a surface normal reflection but this is limited to the out-of-plane component unless off-axis or transmission experiments are performed. A method is presented by which the in-plane component of the mosaic misorientation can be determined from the rocking curves of substrate normal and off-axis reflections. Results are presented for two crystallographically distinct heteroepitaxial systems, ZnO, AlN, and GaN (wurtzite crystal structure) on c-plane sapphire and MgO (rock salt crystal structure) on (001) GaAs. The differences in the mosaic structure of these films are attributed to the crystallographic nature of their lattice dislocations.

Journal ArticleDOI
TL;DR: In this paper, a simple self-aligned process was used to fabricate magnetic tunnel junctions down to submicron sizes using optical and electron-beam lithography, and the shape of the field response of the magnetoresistance was varied by adjusting the shape anisotropy of one junction electrode.
Abstract: We have used a simple self-aligned process to fabricate magnetic tunnel junctions down to submicron sizes Optical and electron-beam lithographies were used to cover a range of areas spanning five orders of magnitude The bottom magnetic electrodes (Co or permalloy) in our junctions were exchange biased by an antiferromagnetic layer (MnFe) The top electrodes were made of soft magnetic materials (Co or permalloy) We have consistently obtained large magnetoresistance ratios (15%–22%) at room temperature and in fields of a few tens of Oe The shape of the field response of the magnetoresistance was varied from smooth to highly hysteretic by adjusting the shape anisotropy of one junction electrode

Journal ArticleDOI
TL;DR: In this article, it was shown that the relationship between the piezoelectrically induced charge and applied stress in ferroelectric ceramics has the same form as the Rayleigh law for magnetization versus magnetic field in ferromagnetic materials.
Abstract: It is shown that at weak alternating stress the relationship between the piezoelectrically induced charge and applied stress in ferroelectric ceramics has the same form as the Rayleigh law for magnetization versus magnetic field in ferromagnetic materials. Applicability of the Rayleigh law to the piezoelectric effect is demonstrated in detail for lead zirconate titanate (PZT) ceramics. Experimental results indicate that the dominant mechanism responsible for piezoelectric hysteresis and the dependence of the piezoelectric coefficient on the applied ac stress is the pinning of non-180 degrees domain walls. The dependence of the piezoelectric coefficient on the frequency of the driving stress is examined and is shown to be due to the frequency dispersion of both reversible and irreversible components of domain-wall displacement. Analysis of the stress dependence of the piezoelectric phase angle reveals piezoelectric hysteresis contributions that are not necessarily due to Rayleigh-type displacement of domain walls. Piezoelectric properties of a modified lead titanate composition that exhibits non-Rayleigh type behavior are examined and compared with the properties of PZT ceramics. (C) 1997 American Institute of Physics.

Journal ArticleDOI
TL;DR: In this article, the structure, morphology, and optical properties of homoepitaxial GaN layers grown by molecular beam epitaxy on metalorganic chemical vapor deposition (MOCVD)-grown GaN “template” layers were investigated as a function of the group III/group V flux ratio during growth.
Abstract: The structure, morphology, and optical properties of homoepitaxial GaN layers grown by molecular beam epitaxy on metalorganic chemical vapor deposition (MOCVD)-grown GaN “template” layers were investigated as a function of the group III/group V flux ratio during growth GaN layers grown with a low III/V ratio (N-stable growth) displayed a faceted surface morphology and a tilted columnar structure with a high density of stacking faults In contrast, films grown with a high III/V ratio (Ga-stable growth) displayed comparable structure to the underlying MOCVD-grown template The transition from N-stable to Ga-stable growth modes was found to occur over a narrow range of Ga fluxes at a growth temperature of 650 °C Evidence of Ga accumulation and step-flow growth was observed for films grown under Ga-stable conditions, leading to the formation of spiral growth features at the surface termination of mixed edge/screw dislocations Photoluminescence measurements indicate that the deep-level (∼550 nm) emission is

Journal ArticleDOI
TL;DR: The temperature and field-dependent permittivities of fiber-textured Ba0.7Sr0.3TiO3 thin films grown by liquid-source metalorganic chemical vapor deposition were investigated as a function of film thickness as discussed by the authors.
Abstract: The temperature- and field-dependent permittivities of fiber-textured Ba0.7Sr0.3TiO3 thin films grown by liquid-source metalorganic chemical vapor deposition were investigated as a function of film thickness. These films display a nonlinear dielectric response under conditions representative of those encountered in dynamic random access memories or other integrated capacitor applications. This behavior has the exact form expected for a classical nonlinear, nonhysteretic dielectric, as described in terms of a power series expansion of the free energy in the polarization as in the Landau–Ginzburg–Devonshire approach. Curie–Weiss-like behavior is exhibited above the bulk Curie point (∼300 K), although the ferroelectric phase transition appears frustrated. Small-signal capacitance measurements of films with different thicknesses (24–160 nm) indicate that only the first term in the power series expansion varies significantly with film thickness or temperature. Possible origins for this thickness dependence are...

Journal ArticleDOI
TL;DR: In this paper, the authors combine hardness indentation tests and micro-Raman spectroscopy to show that metallic Si-II is produced near the interface of a diamond indenter and silicon to a depth of about 0.5 μm.
Abstract: Combining hardness indentation tests and micro-Raman spectroscopy it is shown that metallic Si-II is produced near the interface of a diamond indenter and silicon to a depth of about 0.5 μm, where the highest stresses (hydrostatic and deviatoric) exist. At fast unloading rates Si-II transforms to the amorphous state, whereas a mixture of the r8 high pressure polymorph Si-XII and the bc8 phase Si-III forms upon a slow load release. The region of Si-III+Si-XII is surrounded by the wurtzite structured Si-IV, where the stresses during the indentation had not been high enough to cause the transition to the metallic state. Thus, because of shear deformation a direct transformation to Si-IV takes place. Outside the phase-transformed regions the classical aspects of indentation-induced deformation by dislocation glide, twinning and crack formation are observed. Annealing of the high pressure phases leads to the formation of Si-IV at moderate temperatures and to the reversal to the original diamond structure (Si-I...

Journal ArticleDOI
TL;DR: In this paper, a unified method based on the inclusion formulation is proposed to determine the magnetic, electric, and elastic fields in a composite with piezoelectric and piezomagnetic phases.
Abstract: A unified method based on the inclusion formulation is proposed to determine the magnetic, electric, and elastic fields in a composite with piezoelectric and piezomagnetic phases. The composite reinforcements are treated as ellipsoidal inclusions that enable the reinforcement geometries ranging from thin flakes to continuous fibers. Utilizing the proposed method, the magneto-electro-elastic tensors analogous to Eshelby tensors for elastic ellipsoidal inclusions are obtained. With these tensors, the magnetic, electric, and elastic fields around the inclusion as well as concentration factors are determined. Furthermore, based upon the Mori–Tanaka mean-field theory [Acta Metall. 21, 571 (1973)] to account for the interaction between inclusions and matrix, the effective magneto-electro-elastic constants (elastic moduli, piezoelectric coefficients, dielectric constants, piezomagnetic coefficients, magnetoelectric, and magnetic permeability) of the composites are expressed explicitly in terms of phase propertie...

Journal ArticleDOI
TL;DR: The properties of amorphous carbon (a-C) deposited using a filtered cathodic vacuum arc as a function of the ion energy and substrate temperature are reported in this paper.
Abstract: The properties of amorphous carbon (a-C) deposited using a filtered cathodic vacuum arc as a function of the ion energy and substrate temperature are reported. The sp3 fraction was found to strongly depend on the ion energy, giving a highly sp3 bonded a-C denoted as tetrahedral amorphous carbon (ta-C) at ion energies around 100 eV. The optical band gap was found to follow similar trends to other diamondlike carbon films, varying almost linearly with sp2 fraction. The dependence of the electronic properties are discussed in terms of models of the electronic structure of a-C. The structure of ta-C was also strongly dependent on the deposition temperature, changing sharply to sp2 above a transition temperature, T1, of ≈200 °C. Furthermore, T1 was found to decrease with increasing ion energy. Most film properties, such as compressive stress and plasmon energy, were correlated to the sp3 fraction. However, the optical and electrical properties were found to undergo a more gradual transition with the deposition temperature which we attribute to the medium range order of sp2 sites. We attribute the variation in film properties with the deposition temperature to diffusion of interstitials to the surface above T1 due to thermal activation, leading to the relaxation of density in context of a growth model.

Journal ArticleDOI
TL;DR: In this article, the authors present a unified device model for single layer organic light emitting diodes (LEDs) which includes charge injection, transport, and space charge effects in the organic material.
Abstract: We present a unified device model for single layer organic light emitting diodes (LEDs) which includes charge injection, transport, and space charge effects in the organic material The model can describe both injection limited and space charge limited current flow and the transition between them We specifically considered cases in which the energy barrier to injection of electrons is much larger than that for holes so that holes dominate the current flow in the device Charge injection into the organic material occurs by thermionic emission and by tunneling For Schottky energy barriers less than about 03–04 eV, for typical organic LED device parameters, the current flow is space charge limited and the electric field in the structure is highly nonuniform For larger energy barriers the current flow is injection limited In the injection limited regime, the net injected charge is relatively small, the electric field is nearly uniform, and space charge effects are not important At smaller bias in the injection limited regime, thermionic emission is the dominant injection mechanism For this case the thermionic emissioninjection current and a backward flowing interface recombination current, which is the time reversed process of thermionic emission, combine to establish a quasi-equilibrium carrier density The quasi-equilibrium density is bias dependent because of image force lowering of the injection barrier The net device current is determined by the drift of these carriers in the nearly constant electric field The net device current is much smaller than either the thermionic emission or interface recombination current which nearly cancel At higher bias, injection is dominated by tunneling The bias at which tunneling exceeds thermionic emission depends on the size of the Schottky energy barrier When tunneling is the dominant injection mechanism, a combination of tunnelinginjection current and the backflowing interface recombination current combine to establish the carrier density We compare the model results with experimental measurements on devices fabricated using the electroluminescent conjugated polymer poly[2-methoxy, 5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene] which by changing the contacts can show either injection limited behavior or space charge limited behavior

Journal ArticleDOI
TL;DR: In this article, the effect of biaxial strain on optical phonons in high-quality GaN epitaxial layers grown on 6H-SiC substrates by metal organic chemical vapor deposition has been studied.
Abstract: The effect of biaxial strain on optical phonons in high-quality GaN epitaxial layers grown on 6H–SiC substrates by metal organic chemical vapor deposition has been studied. The deformation potential constants for the E2(1), A1(TO), E1(TO), and E2(2) optical phonon modes in hexagonal GaN have been obtained. A method for calculating strain in hexagonal GaN layers from Raman data alone is suggested. A comparative analysis of the strain measured by x-ray diffraction and Raman spectroscopy shows that these data agree well. It is found that the biaxial stress of 1 GPa results in a shift of the excitonic photoluminescence lines of 20±3 meV.

Journal ArticleDOI
TL;DR: In this paper, the Schottky approximation was used to explain the super-ohmic behavior at higher fields, but the barrier lowering is stronger than expected from this theory, while the leakage mechanism is comparable to SrTiO3 thin films prepared by chemical solution deposition, the absolute values of the leakage current are significantly lower for metalorganic chemical vapor deposition (MOCVD) prepared BST film.
Abstract: (Ba,Sr)TiO3 (BST) thin films grown by chemical vapor deposition and with platinum (Pt) top and bottom electrodes have been characterized with respect to the leakage current as a function of temperature and applied voltage. The data can be interpreted via a thermionic emission model. The Schottky approximation accounts for superohmic behavior at higher fields, but the barrier lowering is stronger than expected from this theory. While the leakage mechanism is comparable to SrTiO3 thin films prepared by chemical solution deposition, the absolute values of the leakage current are significantly lower for the metalorganic chemical vapor deposition (MOCVD) prepared BST film. This is presumably due to a more homogeneous microstructure of the latter and may also be due to different electrode processing. The influence of the film thickness on the leakage in combination with additional findings is used to discuss the field distribution in the films under a dc voltage stress.

Journal ArticleDOI
TL;DR: In this article, the authors used line profiles of several ionic species to infer electron temperature and density at several sections located in front of the target surface, and the validity of the assumption of local thermodynamic equilibrium was discussed in light of the results obtained.
Abstract: Plasma generated by fundamental radiation from a Nd:YAG laser focused onto a graphite target is studied spectroscopically. Measured line profiles of several ionic species were used to infer electron temperature and density at several sections located in front of the target surface. Line intensities of successive ionization states of carbon were used for electron temperature calculations. Stark broadened profiles of singly ionized species have been utilized for electron density measurements. Electron density as well as electron temperature were studied as functions of laser irradiance and time elapsed after the incidence of laser pulse. The validity of the assumption of local thermodynamic equilibrium is discussed in light of the results obtained.