scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Applied Physics in 2003"


Journal ArticleDOI
TL;DR: A review of the literature on thermal transport in nanoscale devices can be found in this article, where the authors highlight the recent developments in experiment, theory and computation that have occurred in the past ten years and summarizes the present status of the field.
Abstract: Rapid progress in the synthesis and processing of materials with structure on nanometer length scales has created a demand for greater scientific understanding of thermal transport in nanoscale devices, individual nanostructures, and nanostructured materials. This review emphasizes developments in experiment, theory, and computation that have occurred in the past ten years and summarizes the present status of the field. Interfaces between materials become increasingly important on small length scales. The thermal conductance of many solid–solid interfaces have been studied experimentally but the range of observed interface properties is much smaller than predicted by simple theory. Classical molecular dynamics simulations are emerging as a powerful tool for calculations of thermal conductance and phonon scattering, and may provide for a lively interplay of experiment and theory in the near term. Fundamental issues remain concerning the correct definitions of temperature in nonequilibrium nanoscale systems. Modern Si microelectronics are now firmly in the nanoscale regime—experiments have demonstrated that the close proximity of interfaces and the extremely small volume of heat dissipation strongly modifies thermal transport, thereby aggravating problems of thermal management. Microelectronic devices are too large to yield to atomic-level simulation in the foreseeable future and, therefore, calculations of thermal transport must rely on solutions of the Boltzmann transport equation; microscopic phonon scattering rates needed for predictive models are, even for Si, poorly known. Low-dimensional nanostructures, such as carbon nanotubes, are predicted to have novel transport properties; the first quantitative experiments of the thermal conductivity of nanotubes have recently been achieved using microfabricated measurement systems. Nanoscale porosity decreases the permittivity of amorphous dielectrics but porosity also strongly decreases the thermal conductivity. The promise of improved thermoelectric materials and problems of thermal management of optoelectronic devices have stimulated extensive studies of semiconductor superlattices; agreement between experiment and theory is generally poor. Advances in measurement methods, e.g., the 3ω method, time-domain thermoreflectance, sources of coherent phonons, microfabricated test structures, and the scanning thermal microscope, are enabling new capabilities for nanoscale thermal metrology.

2,933 citations


Journal ArticleDOI
TL;DR: In this paper, the double heterojunction was proposed to confine excitons within the active layers, allowing substantially higher internal efficiencies to be achieved, and a full optical and electrical analysis of the double-heterostructure architecture leads to optimal cell design as a function of the optical properties and exciton diffusion lengths of the photoactive materials.
Abstract: In this review, we discuss the physics underlying the operation of single and multiple heterojunction, vacuum-deposited organic solar cells based on small molecular weight thin films. For single heterojunction cells, we find that the need for direct contact between the deposited electrode and the active organics leads to quenching of excitons. An improved device architecture, the double heterojunction, is shown to confine excitons within the active layers, allowing substantially higher internal efficiencies to be achieved. A full optical and electrical analysis of the double heterostructure architecture leads to optimal cell design as a function of the optical properties and exciton diffusion lengths of the photoactive materials. Combining the double heterostructure with novel light trapping schemes, devices with external efficiencies approaching their internal efficiency are obtained. When applied to an organic photovoltaic cell with a power conversion efficiency of 1.0%±0.1% under 1 sun AM1.5 illuminati...

2,722 citations


Journal ArticleDOI
TL;DR: In this paper, a comprehensive and up-to-date compilation of band parameters for all of the nitrogen-containing III-V semiconductors that have been investigated to date is presented.
Abstract: We present a comprehensive and up-to-date compilation of band parameters for all of the nitrogen-containing III–V semiconductors that have been investigated to date. The two main classes are: (1) “conventional” nitrides (wurtzite and zinc-blende GaN, InN, and AlN, along with their alloys) and (2) “dilute” nitrides (zinc-blende ternaries and quaternaries in which a relatively small fraction of N is added to a host III–V material, e.g., GaAsN and GaInAsN). As in our more general review of III–V semiconductor band parameters [I. Vurgaftman et al., J. Appl. Phys. 89, 5815 (2001)], complete and consistent parameter sets are recommended on the basis of a thorough and critical review of the existing literature. We tabulate the direct and indirect energy gaps, spin-orbit and crystal-field splittings, alloy bowing parameters, electron and hole effective masses, deformation potentials, elastic constants, piezoelectric and spontaneous polarization coefficients, as well as heterostructure band offsets. Temperature an...

2,525 citations


Journal ArticleDOI
TL;DR: In this paper, a bottom-gate-type thin film transistors using ZnO as an active channel layer (ZnO-TFT) have been constructed using pulsed laser deposition at 450 °C at an oxygen pressure of 3 m Torr, and the material that was formed had a background carrier concentration of less than 5×1016 cm−3.
Abstract: Bottom-gate-type thin film transistors using ZnO as an active channel layer (ZnO–TFT) have been constructed. The ZnO layers were deposited using pulsed laser deposition at 450 °C at an oxygen pressure of 3 m Torr, and the material that was formed had a background carrier concentration of less than 5×1016 cm−3. A double layer gate insulator consisting of SiO2 and SiNx was effective in suppressing leakage current and enabling the ZnO–TFT to operate successfully. The Ion/Ioff ratio of ZnO–TFTs fabricated on Si wafers was more than 105 and the optical transmittance of ZnO–TFTs fabricated on glass was more than 80%. These results show that it is possible to fabricate a transparent TFT that can even be operated in the presence of visible light.

1,543 citations


Journal ArticleDOI
TL;DR: In this paper, a review of porosity in on-chip wires can be found, with an attempt to give an overview of the classification, the character, and the characteristics of the porosity.
Abstract: The ever increasing requirements for electrical performance of on-chip wiring has driven three major technological advances in recent years. First, copper has replaced Aluminum as the new interconnect metal of choice, forcing also the introduction of damascene processing. Second, alternatives for SiO2 with a lower dielectric constant are being developed and introduced in main stream processing. The many new resulting materials needs to be classified in terms of their materials characteristics, evaluated in terms of their properties, and tested for process compatibility. Third, in an attempt to lower the dielectric constant even more, porosity is being introduced into these new materials. The study of processes such as plasma interactions and swelling in liquid media now becomes critical. Furthermore, pore sealing and the deposition of a thin continuous copper diffusion barrier on a porous dielectric are of prime importance. This review is an attempt to give an overview of the classification, the character...

1,496 citations


Journal ArticleDOI
TL;DR: In this paper, a detailed study of static and dynamic magnetic behavior of Fe3O4 nanoparticles with average particle sizes ranging from 5 to 150 nm is presented, and the existence of surface spin disorder can be inferred from the decrease of saturation magnetization MS at low temperatures, as the average particle size is reduced.
Abstract: We present a detailed study of static and dynamic magnetic behavior of Fe3O4 nanoparticles with average particle sizes 〈d〉 ranging from 5 to 150 nm. Bulk-like properties such as saturation magnetization, hyperfine parameters, coercive field, and Verwey transition are observed in 150 nm particles. For decreasing particle size, the Verwey temperature, TV, shifts down to ∼20 K for 〈d〉=50 nm and is no longer observable for smaller particles. The smallest particles (〈d〉=5 nm) display superparamagnetic behavior at room temperature, with transition to a blocked state at TB∼45 K, which depends on the applied field. The existence of surface spin disorder can be inferred from the decrease of saturation magnetization MS at low temperatures, as the average particle size is reduced. This disordered surface did not show effects of exchange coupling to the particle core, as observed from hysteresis loops after field cooling in a 7 T magnetic field. For particles with 〈d〉=5 nm, dynamic ac susceptibility measurements show...

1,265 citations


Journal ArticleDOI
TL;DR: The negative bias temperature instability (NBTI) commonly observed in p-channel metaloxide-semiconductor field effect transistors when stressed with negative gate voltages at elevated temperatures is discussed in this article.
Abstract: We present an overview of negative bias temperature instability (NBTI) commonly observed in p-channel metal–oxide–semiconductor field-effect transistors when stressed with negative gate voltages at elevated temperatures. We discuss the results of such stress on device and circuit performance and review interface traps and oxide charges, their origin, present understanding, and changes due to NBTI. Next we discuss the effects of varying parameters (hydrogen, deuterium, nitrogen, nitride, water, fluorine, boron, gate material, holes, temperature, electric field, and gate length) on NBTI. We conclude with the present understanding of NBTI and its minimization.

1,033 citations


Journal ArticleDOI
TL;DR: In this paper, the temperature dependence of the fluorescence intensity ratio has been studied using thermally coupled energy levels in seven different rare earth ions doped into a variety of glasses and crystals.
Abstract: The fluorescence intensity ratio technique for optical fiber-based point temperature sensing is reviewed, including the materials suitable for this technique. The temperature dependence of the fluorescence intensity ratio has been studied using thermally coupled energy levels in seven different rare earth ions doped into a variety of glasses and crystals. Sensor prototypes developed using Pr3+:ZBLANP, Nd3+-doped silica fiber and Yb3+-doped silica fiber as the sensing material have been used to measure temperatures covering the range of approximately −50 to 600 °C with a resolution of the order of 1 °C.

1,033 citations


Journal ArticleDOI
TL;DR: In this paper, a review focusing on promising candidate materials (such as GaN, GaP and ZnO) is presented, where the introduction of Mn into these and other materials under the right conditions is found to produce ferromagnetism near or above room temperature.
Abstract: Recent advances in the theory and experimental realization of ferromagnetic semiconductors give hope that a new generation of microelectronic devices based on the spin degree of freedom of the electron can be developed. This review focuses primarily on promising candidate materials (such as GaN, GaP and ZnO) in which there is already a technology base and a fairly good understanding of the basic electrical and optical properties. The introduction of Mn into these and other materials under the right conditions is found to produce ferromagnetism near or above room temperature. There are a number of other potential dopant ions that could be employed (such as Fe, Ni, Co, Cr) as suggested by theory [see, for example, Sato and Katayama-Yoshida, Jpn. J. Appl. Phys., Part 2 39, L555 (2000)]. Growth of these ferromagnetic materials by thin film techniques, such as molecular beam epitaxy or pulsed laser deposition, provides excellent control of the dopant concentration and the ability to grow single-phase layers. T...

968 citations


Journal ArticleDOI
King-Ning Tu1
TL;DR: In this paper, the authors reviewed what is current with respect to electromigration in Cu in terms of resistance, capacitance delay, electromigration resistance, and cost of production, and concluded that the most serious and persistent reliability problem in interconnect metallization is electromigration.
Abstract: Today, the price of building a factory to produce submicron size electronic devices on 300 mm Si wafers is over billions of dollars. In processing a 300 mm Si wafer, over half of the production cost comes from fabricating the very-large-scale-integration of the interconnect metallization. The most serious and persistent reliability problem in interconnect metallization is electromigration. In the past 40 years, the microelectronic industry has used Al as the on-chip conductor. Due to miniaturization, however, a better conductor is needed in terms of resistance–capacitance delay, electromigration resistance, and cost of production. The industry has turned to Cu as the on-chip conductor, so the question of electromigration in Cu metallization must be examined. On the basis of what we have learned from the use of Al in devices, we review here what is current with respect to electromigration in Cu. In addition, the system of interconnects on an advanced device includes flip chip solder joints, which now tend ...

885 citations


Journal ArticleDOI
TL;DR: In this paper, the structural and transport properties of evaporated pentacene organic thin film transistors (TFTs) are reported, and they show the influence of the deposition conditions with different inorganic dielectrics.
Abstract: The structural and transport properties of evaporated pentacene organic thin film transistors (TFTs) are reported, and they show the influence of the deposition conditions with different inorganic dielectrics. Dielectrics compatible with large area fabrication were explored to facilitate low cost electronics on glass or flexible plastic substrates. X-ray diffraction and atomic force microscopy show a clear correlation between the morphology and the structure of the highly polycrystalline films for all dielectrics investigated. The roughness of the dielectric has a distinct influence on the morphology and the structural properties, whereas the films on smooth thermal oxide are in general highly ordered and independent of the deposition conditions. The ordered films exhibit a “thin film” and a bulk phase, and the bulk phase volume fraction increases with the deposition temperature and the film thickness. Careful control of the deposition conditions gives virtually identical films on thermal oxide and silico...

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the development of indium nitride (InN) semiconductors from its evolution to the present day and discussed the most popular growth techniques, metalorganic vapor phase epitaxy and molecular beam epitaxy.
Abstract: During the last few years the interest in the indium nitride (InN) semiconductor has been remarkable. There have been significant improvements in the growth of InN films. High quality single crystalline InN film with two-dimensional growth and high growth rate are now routinely obtained. The background carrier concentration and Hall mobility have also improved. Observation of strong photoluminescence near the band edge is reported very recently, leading to conflicts concerning the exact band gap of InN. Attempts have also been made on the deposition of InN based heterostructures for the fabrication of InN based electronic devices. Preliminary evidence of two-dimensional electron gas accumulation in the InN and studies on InN-based field-effect transistor structure are reported. In this article, the work accomplished in the InN research, from its evolution to till now, is reviewed. The In containing alloys or other nitrides (AlGaInN, GaN,AlN) are not discussed here. We mainly concentrate on the growth, characterization, and recent developments in InN research. The most popular growth techniques, metalorganic vapor phase epitaxy and molecular beam epitaxy, are discussed in detail with their recent progress. Important phenomena in the epitaxialgrowth of InN as well as the problems remaining for future study are also discussed.

Journal ArticleDOI
TL;DR: In this paper, it was shown that for non-ohmic contacts, the experimental VOC is determined by the work function difference of the electrodes, and that a total variation of more than 0.5 V of the VOC was observed by variation of the negative electrode (cathode) work function.
Abstract: The open-circuit voltage (VOC) of bulk-heterojunction solar cells based on [6,6]-phenyl C61-butyric acid methyl ester (PCBM) as electron acceptor and poly[2-methoxy-5(3′,7′-dimethyloctyloxy)-p-phenylene vinylene] (OC1C10-PPV) as an electron donor has been investigated. In contrast to the present understanding, it is now demonstrated that for non-ohmic contacts the experimental VOC is determined by the work function difference of the electrodes. A total variation of more than 0.5 V of the VOC was observed by variation of the negative electrode (cathode) work function. For ohmic contacts the VOC is governed by the LUMO and HOMO levels of the acceptor and donor, respectively, which pin the Fermi levels of the cathode and anode. The band bending created by accumulated charges at an ohmic contact produce a considerable loss in VOC of 0.2 V at room temperature. The experimentally observed voltage loss in VOC of 0.38 V due to the presence of ohmic contacts at both interfaces strongly limits the maximum open-circ...

Journal ArticleDOI
TL;DR: In this article, the authors discuss methods of forming silicon-on-insulator (SOI) wafers, their physical properties, and the latest improvements in controlling the structure parameters.
Abstract: Silicon-on-insulator (SOI) wafers are precisely engineered multilayer semiconductor/dielectric structures that provide new functionality for advanced Si devices. After more than three decades of materials research and device studies, SOI wafers have entered into the mainstream of semiconductor electronics. SOI technology offers significant advantages in design, fabrication, and performance of many semiconductor circuits. It also improves prospects for extending Si devices into the nanometer region (<10 nm channel length). In this article, we discuss methods of forming SOI wafers, their physical properties, and the latest improvements in controlling the structure parameters. We also describe devices that take advantage of SOI, and consider their electrical characteristics.

Journal ArticleDOI
TL;DR: In this article, a concentrated nitric acid was used to disentangle CNT aggregates for producing CNT nanofluids, which were successfully dispersed into polar liquids like distilled water, ethylene glycol and decene with oleylamine as surfactant.
Abstract: Multiwalled carbon nanotubes (CNTs) as produced are usually entangled and not ready to be dispersed into fluids. We treated CNTs by using a concentrated nitric acid to disentangle CNT aggregates for producing CNT nanofluids. Oxygen-containing functional groups have been introduced on the CNT surfaces and more hydrophilic surfaces have been formed during this treatment, which enabled to make stable and homogeneous CNT nanofluids. Treated CNTs were successfully dispersed into polar liquids like distilled water, ethylene glycol without the need of surfactant and into nonpolar fluid like decene with oleylamine as surfactant. We measured the thermal conductivities of these nanotube suspensions using a transient hot wire apparatus. Nanotube suspensions, containing a small amount of CNTs, have substantially higher thermal conductivities than the base fluids, with the enhancement increasing with the volume fraction of CNTs. For the suspensions with the same loading, the enhanced thermal conductivity ratios are re...

Journal ArticleDOI
TL;DR: In this article, a model based on the theory of nonlocal continuum mechanics is presented for column buckling of multi-walled carbon nanotubes, where each of the nested concentric tubes is an individual column and the deflection of all the columns is coupled together through the van der Waals interactions between adjacent tubes.
Abstract: A model, based on the theory of nonlocal continuum mechanics, on the column buckling of multiwalled carbon nanotubes is presented. The present analysis considers that each of the nested concentric tubes is an individual column and that the deflection of all the columns is coupled together through the van der Waals interactions between adjacent tubes. Based on this description, a condition is derived in terms of the parameters that describe the van der Waals forces and the small internal length scale effects. In particular, an explicit expression is derived for the critical axial strain of a double walled carbon nanotube which clearly demonstrates that small scale effects contribute significantly to the mechanical behavior of multiwalled carbon nanotubes and cannot be ignored.

Journal ArticleDOI
TL;DR: In this paper, the authors have shown that PECVD of tetramethylcyclotetrasiloxane (TMCTS) produces a highly crosslinked networked SiCOH film.
Abstract: Carbon doped oxide dielectrics comprised of Si, C, O, and H (SiCOH) have been prepared by plasma enhanced chemical vapor deposition (PECVD) from mixtures of tetramethylcyclotetrasiloxane (TMCTS) and an organic precursor. The films have been analyzed by determining their elemental composition and by Fourier transform infrared spectroscopy with deconvolution of the absorption peaks. The analysis has shown that PECVD of TMCTS produces a highly crosslinked networked SiCOH film. Dissociation of TMCTS appears to dominate the deposition chemistry as evidenced by the multitude of bonding environments and formation of linear chains and branches. Extensive crosslinking of TMCTS rings occurs through Si–Si, Si–CH2–Si, Si–O–Si, and Si–CH2–O–Si moieties. The films deposited from mixtures of TMCTS and organic precursor incorporate hydrocarbon fragments into the films. This incorporation occurs most probably through the reaction of the organic precursor and the Si–H bonds of TMCTS. Annealing the SiCOH films deposited fro...

Journal ArticleDOI
TL;DR: In this paper, the optical and electronic properties of the In1−xGaxN alloys have been investigated and shown to exhibit a much higher resistance to high energy (2 MeV) proton irradiation than the standard currently used photovoltaic materials such as GaAs and GaInP, and therefore offer great potential for radiation-hard high-efficiency solar cells for space applications.
Abstract: High-efficiency multijunction or tandem solar cells based on group III–V semiconductor alloys are applied in a rapidly expanding range of space and terrestrial programs. Resistance to high-energy radiation damage is an essential feature of such cells as they power most satellites, including those used for communications, defense, and scientific research. Recently we have shown that the energy gap of In1−xGaxN alloys potentially can be continuously varied from 0.7 to 3.4 eV, providing a full-solar-spectrum material system for multijunction solar cells. We find that the optical and electronic properties of these alloys exhibit a much higher resistance to high-energy (2 MeV) proton irradiation than the standard currently used photovoltaic materials such as GaAs and GaInP, and therefore offer great potential for radiation-hard high-efficiency solar cells for space applications. The observed insensitivity of the semiconductor characteristics to the radiation damage is explained by the location of the band edge...

Journal ArticleDOI
TL;DR: In this paper, a single crystalline and highly resistive wurtzite ZnO films were obtained from infrared (300-1200 cm−1) spectroscopic ellipsometry and Raman scattering studies.
Abstract: Infrared dielectric function spectra and phonon modes of high-quality, single crystalline, and highly resistive wurtzite ZnO films were obtained from infrared (300–1200 cm−1) spectroscopic ellipsometry and Raman scattering studies. The ZnO films were deposited by pulsed-laser deposition on c-plane sapphire substrates and investigated by high-resolution x-ray diffraction, high-resolution transmission electron microscopy, and Rutherford backscattering experiments. The crystal structure, phonon modes, and dielectric functions are compared to those obtained from a single-crystal ZnO bulk sample. The film ZnO phonon mode frequencies are highly consistent with those of the bulk material. A small redshift of the longitudinal optical phonon mode frequencies of the ZnO films with respect to the bulk material is observed. This is tentatively assigned to the existence of vacancy point defects within the films. Accurate long-wavelength dielectric constant limits of ZnO are obtained from the infrared ellipsometry anal...

Journal ArticleDOI
TL;DR: In this paper, a two-dimensional finite-element based micro-scale flow model is developed to efficiently predict the overall flow characteristics up to the transition regime for reasonably high Knudsen number flow inside microchannels and nanopores.
Abstract: Microchannel based systems have emerged as a critical design trend in development of precise control and maneuvering of small devices. In microelectronics, space propulsion and biomedical areas, these systems are especially useful. Nanoscale pores are recently becoming of great interest due to their beneficial drag and heat transfer properties. However it is difficult to predict the flow performance of these microsystems and nanosystems numerically since the standard assumptions of using Navier–Stokes equations break down at micrometer scales, while the computational times of applicable molecular-dynamics codes become exorbitant. A two-dimensional finite-element based microscale flow model is developed to efficiently predict the overall flow characteristics up to the transition regime for reasonably high Knudsen number flow inside microchannels and nanopores. Presented two-dimensional numerical results for Poiseuille flow of a simple fluid through the microchannel are comparable to the numerical and exper...

Journal ArticleDOI
TL;DR: In this paper, the thermal and electrical properties of single wall carbon nanotube (CNT)-polymer composites are significantly enhanced by magnetic alignment during processing, and the electrical transport properties are mainly governed by the hopping conduction with localization lengths comparable to bundle diameters.
Abstract: We show that the thermal and electrical properties of single wall carbon nanotube (CNT)-polymer composites are significantly enhanced by magnetic alignment during processing. The electrical transport properties of the composites are mainly governed by the hopping conduction with localization lengths comparable to bundle diameters. The bundling of nanotubes during the composite processing is an important factor for electrical, and in particular, for thermal transport properties. Better CNT isolation will be needed to reach the theoretical thermal conductivity limit for CNT composites.

Journal ArticleDOI
TL;DR: In this paper, a unified model for thin film epitaxy where single crystal films with small and large lattice misfits are grown by domain matching epitaxy (DME) is presented.
Abstract: We present a unified model for thin film epitaxy where single crystal films with small and large lattice misfits are grown by domain matching epitaxy (DME). The DME involves matching of lattice planes between the film and the substrate having similar crystal symmetry. In this framework, the conventional lattice matching epitaxy becomes a special case where a matching of lattice constants or the same planes is involved with a small misfit of less than 7%–8%. In large lattice mismatch systems, we show that epitaxial growth of thin films is possible by matching of domains where integral multiples of major lattice planes match across the interface. We illustrate this concept with atomic-level details in the TiN/Si(100) with 3/4 matching, the AlN/Si(100)with 4/5 matching, and the ZnO/α−Al2O3(0001) with 6/7 matching of major planes across the film/substrate interface. By varying the domain size, which is equal to intregral multiple of lattice planes, in a periodic fashion, it is possible to accommodate addition...

Journal ArticleDOI
TL;DR: In this article, a microscopic approach based on noncontact scanning-probe potentiometry was used to directly separate the transport properties of the transistor channel and the electrode/polymer contacts, giving very accurate experimental access to both the source and drain contact resistance.
Abstract: Parasitic contact resistance effects are becoming a major issue in organic transistors in that they can severely limit or even dominate their overall transistor performance. We present a systematic study of the contact resistance in bottom-contact polymer field-effect transistors made from poly(3-hexylthiophene) (P3HT) as well as poly-9,9′dioctyl-fluorene-co-bithiophene (F8T2). A microscopic approach based on noncontact scanning-probe potentiometry was used to directly separate the transport properties of the transistor channel and the electrode/polymer contacts, giving very accurate experimental access to both the source and drain contact resistance. The influence of the relevant parameters (temperature, electrode work function, ionization potential of the polymer, charge carrier mobility) on the source/drain contact resistance is investigated. We find that for “good” source/drain contacts that give rise to relatively small overall contact resistances (⩽50 kΩ cm), e.g., P3HT with chromium–gold electrodes...

Journal ArticleDOI
TL;DR: In this article, a single maximum in the magnetoelastic coupling |b1| of Fe with increasing amounts of nonmagnetic Ga, combined with a strongly temperature dependent elastic shear modulus (c11−c12) is interpreted as anomalous magnetostrictive behavior in Fe-Ga alloys.
Abstract: Extraordinary magnetostrictive behavior has been observed in Fe-Ga alloys with concentrations of Ga between 4% and 27%. λ100 exhibits two peaks as a function of Ga content. At room temperature, λ100 reaches a maximum of 265 ppm near 19% Ga and 235 ppm near 27% Ga. For compositions between 19% and 27%, λ100 drops sharply to a minimum near 24% Ga and exhibits an anomalous temperature dependence, decreasing by as much as a factor of 2 at low temperatures. This unusual magnetostrictive behavior is interpreted on the basis of a single maximum in the magnetoelastic coupling |b1| of Fe with increasing amounts of nonmagnetic Ga, combined with a strongly temperature dependent elastic shear modulus (c11−c12) which approaches zero near 27% Ga. λ111 is significantly smaller in magnitude than λ100 over this composition range, and has an abrupt change in sign from negative for low Ga concentrations to positive for a concentration of Ga near 21%.

Journal ArticleDOI
TL;DR: In this paper, the authors show that charge carriers are photogenerated with very different spatial distributions in conventional inorganic photovoltaic (IPV) cells and in organic photovolastic (OPV or excitonic) cells.
Abstract: Charge carriers are photogenerated with very different spatial distributions in conventional inorganic photovoltaic (IPV) cells and in organic photovoltaic (OPV or excitonic) cells. This leads to a fundamental, and often overlooked, mechanistic difference between them. Carriers are generated primarily at the exciton-dissociating heterointerface in OPV cells, resulting in the production of electrons in one phase and holes in the other—the two carrier types are thus already separated across the interface upon photogeneration in OPV cells, giving rise to a powerful chemical potential energy gradient ∇μhv that promotes the photovoltaic effect. This occurs also in high-surface-area OPV cells, although their description is more complex. In contrast, both carrier types are photogenerated together throughout the bulk in IPV cells: ∇μhv then drives both electrons and holes in the same direction through the same phase; efficient carrier separation therefore requires a built-in equilibrium electrical potential energ...

Journal ArticleDOI
TL;DR: In this article, the authors report evidence for two different mechanisms of material ablation in the liquid environment, whose relative contributions determine the size distribution of the produced colloidal gold nanoparticles.
Abstract: Femtosecond laser radiation has been used to ablate a gold target in pure deionized water to produce colloidal gold nanoparticles. We report evidence for two different mechanisms of material ablation in the liquid environment, whose relative contributions determine the size distribution of the produced particles. The first mechanism, associated with thermal-free femtosecond ablation, manifests itself at relatively low laser fluences F<400 J/cm2 and leads to very small (3–10 nm) and almost monodispersed gold colloids. The second one, attributed to the plasma-induced heating and ablation of the target, takes place at high fluences and gives rise to a much larger particle size and broad size distribution. The fabricated nanoparticles exhibit plasmon-related optical absorption peak and are of significance for biosensing applications.

Journal ArticleDOI
Massimo V. Fischetti1, Z. Ren, Paul M. Solomon1, Min Yang1, K. Rim1 
TL;DR: In this paper, a six-band k⋅p model has been used to study the mobility of holes in Si inversion layers for different crystal orientations, for both compressive or tensile strain applied to the channel, and for a varying thickness of the Si layer.
Abstract: A six-band k⋅p model has been used to study the mobility of holes in Si inversion layers for different crystal orientations, for both compressive or tensile strain applied to the channel, and for a varying thickness of the Si layer. Scattering assisted by phonons and surface roughness has been accounted for, also comparing a full anisotropic model to an approximated isotropic treatment of the matrix elements. Satisfactory qualitative (and in several cases also quantitative) agreement is found between experimental data and theoretical results for the density and temperature dependence of the mobility for (001) surfaces, as well as for the dependence of the mobility on surface orientation [for the (011) and (111) surfaces]. Both compressive and tensile strain are found to enhance the mobility, while confinement effects result in a reduced hole mobility for a Si thickness ranging from 30 to 3 nm.

Journal ArticleDOI
TL;DR: In this paper, the effect of ambient gas on the expansion dynamics of the plume generated by laser ablation of an aluminum target has been investigated using frequency doubled radiation from a Q-switched Nd:YAG laser.
Abstract: The effect of ambient gas on the expansion dynamics of the plasma generated by laser ablation of an aluminum target has been investigated using frequency doubled radiation from a Q-switched Nd:YAG laser. The diagnostic tools include fast photography of overall visible plume emission using a 2 ns gated intensified charged coupled device and space and time resolved emission spectroscopy using a 50 cm monochromator/spectrograph and photomultiplier tube. The expansion behavior of the plasma was studied with ambient air pressure ranging from 10−6 to 100 Torr. Free expansion, plume splitting and sharpening, hydrodynamic instability, and stagnation of the plume were observed at different pressure levels. Space and time resolved emission spectroscopic studies showed a twin peak distribution for Al and Al+ species at farther distances illustrating plume splitting at pressures higher than 100 mTorr. Combining imaging together with time resolved emission diagnostics, a triple structure of the plume was observed. The expansion of the plume front was compared with various expansion models and found to be generally in good agreement.

Journal ArticleDOI
TL;DR: In this paper, it was shown that moderately doped unipolar heterojunctions as well as metal-semiconductor junctions, in particular the metal contact to p-type GaN, can increase the ideality factor to values greater than 2.
Abstract: Diode ideality factors much higher than the expected values of 1.0 to 2.0 have been reported in GaN-based p-n junctions. It is shown that moderately doped unipolar heterojunctions as well as metal-semiconductor junctions, in particular the metal contact to p-type GaN, can increase the ideality factor to values greater than 2.0. A relation is derived for the effective ideality factor by taking into account all junctions of the diode structure. Diodes fabricated from a bulk GaN p-n junction and a p-n junction structure with a p-type AlGaN/GaN superlattice display ideality factors of 6.9 and 4.0, respectively. These results are consistent with the theoretical model and the fact that p-type AlGaN/GaN superlattices facilitate the formation of low-resistance ohmic contacts.

Journal ArticleDOI
TL;DR: In this paper, the effect of antenna shape, length, and sharpness upon the intensity of the optical fields produced by the antenna arrays was investigated. And the FDTD calculated and experimentally measured extinction efficiencies of the antennas were found to be in good agreement.
Abstract: Electromagnetic field enhancement in optical antenna arrays is studied by simulation and experiment at midinfrared wavelengths. The optical antennas are designed to produce intense optical fields confined to subwavelength spatial dimensions when illuminated at the resonant wavelength. Finite difference time domain (FDTD) method simulations are made of the current, charge, and field distributions in the antennas. The influence of antenna shape, length, and sharpness upon the intensity of the optical fields produced is found. Optical antennas arrays are fabricated on transparent substrates by electron beam lithography. Far-field extinction spectroscopy carried out on the antenna arrays shows the dependence of the resonant wavelength on the antenna length and material. The FDTD calculated and experimentally measured extinction efficiencies of the optical antennas are found to be in good agreement.