scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Applied Physics in 2005"


Journal ArticleDOI
TL;DR: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature.
Abstract: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature. Even though research focusing on ZnO goes back many decades, the renewed interest is fueled by availability of high-quality substrates and reports of p-type conduction and ferromagnetic behavior when doped with transitions metals, both of which remain controversial. It is this renewed interest in ZnO which forms the basis of this review. As mentioned already, ZnO is not new to the semiconductor field, with studies of its lattice parameter dating back to 1935 by Bunn [Proc. Phys. Soc. London 47, 836 (1935)], studies of its vibrational properties with Raman scattering in 1966 by Damen et al. [Phys. Rev. 142, 570 (1966)], detailed optical studies in 1954 by Mollwo [Z. Angew. Phys. 6, 257 (1954)], and its growth by chemical-vapor transport in 1970 by Galli and Coker [Appl. Phys. ...

10,260 citations


Journal ArticleDOI
TL;DR: In this paper, the surface chemistry of the trimethylaluminum/water ALD process is reviewed, with an aim to combine the information obtained in different types of investigations, such as growth experiments on flat substrates and reaction chemistry investigation on high-surface-area materials.
Abstract: Atomic layer deposition(ALD), a chemical vapor deposition technique based on sequential self-terminating gas–solid reactions, has for about four decades been applied for manufacturing conformal inorganic material layers with thickness down to the nanometer range. Despite the numerous successful applications of material growth by ALD, many physicochemical processes that control ALD growth are not yet sufficiently understood. To increase understanding of ALD processes, overviews are needed not only of the existing ALD processes and their applications, but also of the knowledge of the surface chemistry of specific ALD processes. This work aims to start the overviews on specific ALD processes by reviewing the experimental information available on the surface chemistry of the trimethylaluminum/water process. This process is generally known as a rather ideal ALD process, and plenty of information is available on its surface chemistry. This in-depth summary of the surface chemistry of one representative ALD process aims also to provide a view on the current status of understanding the surface chemistry of ALD, in general. The review starts by describing the basic characteristics of ALD, discussing the history of ALD—including the question who made the first ALD experiments—and giving an overview of the two-reactant ALD processes investigated to date. Second, the basic concepts related to the surface chemistry of ALD are described from a generic viewpoint applicable to all ALD processes based on compound reactants. This description includes physicochemical requirements for self-terminating reactions,reaction kinetics, typical chemisorption mechanisms, factors causing saturation, reasons for growth of less than a monolayer per cycle, effect of the temperature and number of cycles on the growth per cycle (GPC), and the growth mode. A comparison is made of three models available for estimating the sterically allowed value of GPC in ALD. Third, the experimental information on the surface chemistry in the trimethylaluminum/water ALD process are reviewed using the concepts developed in the second part of this review. The results are reviewed critically, with an aim to combine the information obtained in different types of investigations, such as growth experiments on flat substrates and reaction chemistry investigation on high-surface-area materials. Although the surface chemistry of the trimethylaluminum/water ALD process is rather well understood, systematic investigations of the reaction kinetics and the growth mode on different substrates are still missing. The last part of the review is devoted to discussing issues which may hamper surface chemistry investigations of ALD, such as problematic historical assumptions, nonstandard terminology, and the effect of experimental conditions on the surface chemistry of ALD. I hope that this review can help the newcomer get acquainted with the exciting and challenging field of surface chemistry of ALD and can serve as a useful guide for the specialist towards the fifth decade of ALD research.

2,212 citations


Journal ArticleDOI
TL;DR: In this article, the basic physics of surface-plasmon excitations occurring at metal/dielectric interfaces with special emphasis on the possibility of using such excitations for the localization of electromagnetic energy in one, two, and three dimensions, in a context of applications in sensing and waveguiding for functional photonic devices.
Abstract: We review the basic physics of surface-plasmon excitations occurring at metal/dielectric interfaces with special emphasis on the possibility of using such excitations for the localization of electromagnetic energy in one, two, and three dimensions, in a context of applications in sensing and waveguiding for functional photonic devices. Localized plasmon resonances occurring in metallic nanoparticles are discussed both for single particles and particle ensembles, focusing on the generation of confined light fields enabling enhancement of Raman-scattering and nonlinear processes. We then survey the basic properties of interface plasmons propagating along flat boundaries of thin metallic films, with applications for waveguiding along patterned films, stripes, and nanowires. Interactions between plasmonic structures and optically active media are also discussed.

1,881 citations


Journal ArticleDOI
TL;DR: In this paper, the structural and point defects caused by lattice and stacking mismatch with substrates are discussed. But even the best of the three binaries, InN, AIN and AIN as well as their ternary compounds, contain many structural defects, and these defects notably affect the electrical and optical properties of the host material.
Abstract: Gallium nitride (GaN) and its allied binaries InN and AIN as well as their ternary compounds have gained an unprecedented attention due to their wide-ranging applications encompassing green, blue, violet, and ultraviolet (UV) emitters and detectors (in photon ranges inaccessible by other semiconductors) and high-power amplifiers. However, even the best of the three binaries, GaN, contains many structural and point defects caused to a large extent by lattice and stacking mismatch with substrates. These defects notably affect the electrical and optical properties of the host material and can seriously degrade the performance and reliability of devices made based on these nitride semiconductors. Even though GaN broke the long-standing paradigm that high density of dislocations precludes acceptable device performance, point defects have taken the center stage as they exacerbate efforts to increase the efficiency of emitters, increase laser operation lifetime, and lead to anomalies in electronic devices. The p...

1,724 citations


Journal ArticleDOI
TL;DR: In this paper, a device physics model for radial p-n junction nanorod solar cells was developed, in which densely packed nanorods, each having a pn junction in the radial direction, are oriented with the rod axis parallel to the incident light direction.
Abstract: A device physics model has been developed for radial p-n junction nanorod solar cells, in which densely packed nanorods, each having a p-n junction in the radial direction, are oriented with the rod axis parallel to the incident light direction. High-aspect-ratio (length/diameter) nanorods allow the use of a sufficient thickness of material to obtain good optical absorption while simultaneously providing short collection lengths for excited carriers in a direction normal to the light absorption. The short collection lengths facilitate the efficient collection of photogenerated carriers in materials with low minority-carrier diffusion lengths. The modeling indicates that the design of the radial p-n junction nanorod device should provide large improvements in efficiency relative to a conventional planar geometry p-n junction solar cell, provided that two conditions are satisfied: (1) In a planar solar cell made from the same absorber material, the diffusion length of minority carriers must be too low to allow for extraction of most of the light-generated carriers in the absorber thickness needed to obtain full light absorption. (2) The rate of carrier recombination in the depletion region must not be too large (for silicon this means that the carrier lifetimes in the depletion region must be longer than ~10 ns). If only condition (1) is satisfied, the modeling indicates that the radial cell design will offer only modest improvements in efficiency relative to a conventional planar cell design. Application to Si and GaAs nanorod solar cells is also discussed in detail.

1,397 citations


Journal ArticleDOI
TL;DR: In this article, the resistive switching mechanism of 20-to 57-nm-thick TiO2 thin films grown by atomic-layer deposition was studied by currentvoltage measurements and conductive atomic force microscopy.
Abstract: The resistive switching mechanism of 20- to 57-nm-thick TiO2 thin films grown by atomic-layer deposition was studied by current-voltage measurements and conductive atomic force microscopy. Electric pulse-induced resistance switching was repetitively (> a few hundred times) observed with a resistance ratio ⪢102. Both the low- and high-resistance states showed linear log current versus log voltage graphs with a slope of 1 in the low-voltage region where switching did not occur. The thermal stability of both conduction states was also studied. Atomic force microscopy studies under atmosphere and high-vacuum conditions showed that resistance switching is closely related to the formation and elimination of conducting spots. The conducting spots of the low-resistance state have a few tens times higher conductivity than those of the high-resistance state and their density is also a few tens times higher which results in a ∼103 times larger overall conductivity. An interesting finding was that the area where the ...

1,120 citations


Journal ArticleDOI
TL;DR: A review of the history and current progress in highmobility strained Si, SiGe, and Ge channel metal-oxide-semiconductor field effect transistors (MOSFETs) can be found in this article.
Abstract: This article reviews the history and current progress in high-mobility strained Si, SiGe, and Ge channel metal-oxide-semiconductor field-effect transistors (MOSFETs). We start by providing a chronological overview of important milestones and discoveries that have allowed heterostructures grown on Si substrates to transition from purely academic research in the 1980’s and 1990’s to the commercial development that is taking place today. We next provide a topical review of the various types of strain-engineered MOSFETs that can be integrated onto relaxed Si1−xGex, including surface-channel strained Si n- and p-MOSFETs, as well as double-heterostructure MOSFETs which combine a strained Si surface channel with a Ge-rich buried channel. In all cases, we will focus on the connections between layer structure, band structure, and MOS mobility characteristics. Although the surface and starting substrate are composed of pure Si, the use of strained Si still creates new challenges, and we shall also review the litera...

918 citations


Journal ArticleDOI
TL;DR: In this paper, the effects of annealing temperature and time on the device performance for devices annealed before and after cathode deposition were studied, showing significant improvement in the performance.
Abstract: Regioregular poly(3-hexylthiophene) (RR-P3HT) is a promising candidate for polymer photovoltaic research due to its stability and absorption in the red region. In this manuscript, we report polymer photovoltaic devices based on RR-P3HT:methanofullerene [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) 1:1 weight-ratio blend. We studied the effects of annealing temperature and time on the device performance for devices annealed before and after cathode deposition. Thermal annealing shows significant improvement in the performance for both types of annealing conditions, with postproduction annealing being slightly better. For devices with a 43-nm-thick active layer, maximum power conversion efficiency (PCE) of 3.2% and fill factor up to 67% is achieved under Air Mass 1.5, 100‐mW∕cm2 illumination. We performed atomic force microscopy and ultraviolet-visible absorption spectroscopy on the P3HT:PCBM films to explain the effect of thermal annealing. By keeping the optimized thermal annealing condition and by va...

821 citations


Journal ArticleDOI
TL;DR: In this article, a review of the application areas for carbon nanotubes and nanofibers including electron field-emission sources, electrochemical probes, functionalized sensor elements, scanning probe microscopy tips, nanoelectromechanical systems (NEMS), hydrogen and charge storage, and catalyst support.
Abstract: The controlled synthesis of materials by methods that permit their assembly into functional nanoscale structures lies at the crux of the emerging field of nanotechnology. Although only one of several materials families is of interest, carbon-based nanostructured materials continue to attract a disproportionate share of research effort, in part because of their wide-ranging properties. Additionally, developments of the past decade in the controlled synthesis of carbon nanotubes and nanofibers have opened additional possibilities for their use as functional elements in numerous applications. Vertically aligned carbon nanofibers (VACNFs) are a subclass of carbon nanostructured materials that can be produced with a high degree of control using catalytic plasma-enhanced chemical-vapor deposition (C-PECVD). Using C-PECVD the location, diameter, length, shape, chemical composition, and orientation can be controlled during VACNF synthesis. Here we review the CVD and PECVD systems, growth control mechanisms, catalyst preparation, resultant carbon nanostructures, and VACNF properties. This is followed by a review of many of the application areas for carbon nanotubes and nanofibers including electron field-emission sources, electrochemical probes, functionalized sensor elements, scanning probe microscopy tips, nanoelectromechanical systems (NEMS), hydrogen and charge storage, and catalyst support. We end by noting gaps in the understanding of VACNF growth mechanisms and the challenges remaining in the development of methods for an even more comprehensive control of the carbon nanofiber synthesis process.

684 citations


Journal ArticleDOI
TL;DR: The optical band gap of ZnO thin films deposited on fused quartz by metal-organic chemical-vapor deposition was studied in this article, where X-ray diffraction measurements showed that samples deposited at low temperatures (<450°C) consisted of amorphous and crystalline phases.
Abstract: The optical band gap of ZnO thin films deposited on fused quartz by metal-organic chemical-vapor deposition was studied. The optical band gap of as-grown ZnO blueshifted from 3.13to4.06eV as the growth temperature decreased from 500to200°C. After annealing, the optical band gap shifted back to the single-crystal value. All the ZnO thin films studied show strong band-edge photoluminescence. X-ray diffraction measurements showed that samples deposited at low temperatures (<450°C) consisted of amorphous and crystalline phases. The redshift of the optical band gap back to the original position after annealing was strong evidence that the blueshift was due to an amorphous phase. The unshifted photoluminescence spectra indicated that the luminescence was due to the crystalline phase of ZnO, which was in the form of nanocrystals embedded in the amorphous phase.

662 citations


Journal ArticleDOI
TL;DR: In this paper, the small-scale effect of wave propagation dispersion relation on carbon nanotubes (CNTs) wave numbers and diameters was investigated with two nonlocal continuum mechanics models: elastic Euler-Bernoulli and Timoshenko beam models.
Abstract: Wave propagation in carbon nanotubes (CNTs) is studied with two nonlocal continuum mechanics models: elastic Euler-Bernoulli and Timoshenko beam models [Philos. Mag. 41, 744 (1921)]. The small-scale effect on CNTs wave propagation dispersion relation is explicitly revealed for different CNTs wave numbers and diameters by theoretical analyses and numerical simulations. The asymptotic phase velocities and frequency are also derived from nonlocal continuum mechanics. The scale coefficient in nonlocal continuum mechanics is roughly estimated for CNTs from the obtained asymptotic frequency. In addition, the applicability and comparison of the two nonlocal elastic beam models to CNTs wave propagation are explored through numerical simulations. The research findings are proved effective in predicting small-scale effect on CNTs wave propagation with a qualitative validation study based on the published experimental reports in this field.

Journal ArticleDOI
TL;DR: In this paper, the authors measured nonresonant and resonant Raman-scattering spectra from ZnO nanocrystals with an average diameter of 20nm.
Abstract: We have measured nonresonant and resonant Raman-scattering spectra from ZnO nanocrystals with an average diameter of 20nm. Based on our experimental data and comparison with the recently developed theory, we show that the observed shifts of the polar optical-phonon peaks in the resonant Raman spectra are not related to the spatial phonon confinement. The very weak dispersion of the polar optical phonons in ZnO nanocrystals does not lead to any noticeable redshift of the phonon peaks for 20-nm nanocrystals. The observed phonon shifts have been attributed to the local heating effects. We have demonstrated that even the low-power ultraviolet laser excitation, required for the resonant Raman spectroscopy, can lead to the strong local heating of ZnO nanocrystals. The latter causes significant (up to 14cm−1) redshift of the optical-phonon peaks compared to their position in bulk crystals. Nonresonant Raman excitation does not produce noticeable local heating. The obtained results can be used for identification ...

Journal ArticleDOI
TL;DR: In this article, the authors show that the suspension of highly thermally conductive materials is not always effective to improve thermal transport property of nanofluids, and they also find that suspension of high-powered pulses is also not always beneficial.
Abstract: Nanofluids, a mixture of nanoparticles and fluid, have enormous potential to improve the efficiency of heat transfer fluids. Fe nanofluids are prepared with ethylene glycol and Fe nanocrystalline powder synthesized by a chemical vapor condensation process. Sonication with high-powered pulses is used to improve the dispersion of nanoparticles in the preparation of nanofluids. Nanofluids exhibit an enhancement of thermal conductivity after sonication. Thermal conductivity of a Fe nanofluid is increased nonlinearly up to 18% as the volume fraction of particles is increased up to 0.55 vol. %. Comparing Fe nanofluids with Cu nanofluids, we find that the suspension of highly thermally conductive materials is not always effective to improve thermal transport property of nanofluids.

Journal ArticleDOI
TL;DR: In this paper, the authors measured the thermal properties of heavy La- or Nb-doped SrTiO3 (STO) bulk single crystals at high temperatures to clarify the influence of doping upon the thermoelectric performance of STO.
Abstract: Electron and thermal transport properties, i.e., electrical conductivity, carrier concentration, Hall mobility, Seebeck coefficient, thermal conductivity, of heavily La- or Nb-doped SrTiO3 (STO) bulk single crystals were measured at high temperatures, (300–1050K) to clarify the influence of doping upon the thermoelectric performance of STO. The temperature dependence of Hall mobility and Seebeck coefficient changed at ∼750K in all samples because the dominant mechanism for carrier scattering changed with increasing temperature from coupled scattering by polar optical phonons and acoustic phonons to mere acoustic phonon scattering. The density-of-states effective mass of Nb-doped STO, which was estimated from the carrier concentration and Seebeck coefficient, was larger than that of La-doped STO. Thermal conductivity of the samples, which was similar to that of undoped STO single crystal, decreased proportionally to T−1, indicating that the phonon conduction takes place predominantly and the electronic con...

Journal ArticleDOI
TL;DR: In this article, a model based on physical parameters was used in the analysis of the electrical data and very good agreement was obtained, the sensitivity of the various model parameters obtained by a best-fit procedure to the experimental data has been investigated.
Abstract: Copper wires were prepared in a silicon oxide matrix using the methods of semiconductor manufacturing and were electrically characterized. The width of the smallest structure was 40 nm and of the largest, 1000 nm; the heights were 50, 155, and 230 nm. Many samples of each size have been measured in order to perform a systematic investigation. The resistivity of the sample was extracted using the temperature coefficient of resistance. A significant increase in the resistivity was found for the small structures (roughly a factor 2 for 50-nm width). A model based on physical parameters was used in the analysis of the electrical data and very good agreement was obtained. The sensitivity of the various model parameters obtained by a best-fit procedure to the experimental data has been investigated. The impact of width and height on the resistivity, the influence of electron scattering at grain boundaries compared to surface scattering, and the impact of grain sizes and impurities will be discussed in detail.

Journal ArticleDOI
TL;DR: In this article, the structural, thermal, microscopic, magnetization, polarization, and dielectric properties of BiFeO3 ceramics synthesized by a rapid liquid-phase sintering technique were reported.
Abstract: We have reported the structural, thermal, microscopic, magnetization, polarization, and dielectric properties of BiFeO3 ceramics synthesized by a rapid liquid-phase sintering technique. Optimum conditions for the synthesis of single-phase BiFeO3 ceramics were obtained. Temperature-dependent magnetization and hysteresis loops indicate antiferromagnetic behavior in BiFeO3 at room temperature. Although saturated ferroelectric hysteresis loops were observed in single-phase BiFeO3 ceramic synthesized at 880 °C, the reduced polarization is found to be due to the high loss and low dielectric permittivity of the ceramic, which is caused by higher leakage current.

Journal ArticleDOI
TL;DR: In this article, high mobility, n-type transparent thin-film transistors (TTFTs) with a zinc indium oxide (ZIO) channel layer are reported, which have excellent drain current saturation, peak incremental channel mobilities of 45-55cm2V−1s−1, drain current on-to-off ratios of ∼106, and inverse subthreshold slopes of ∼0.8V∕decade.
Abstract: High mobility, n-type transparent thin-film transistors (TTFTs) with a zinc indium oxide (ZIO) channel layer are reported. Such devices are highly transparent with ∼85% optical transmission in the visible portion of the electromagnetic spectrum. ZIO TTFTs annealed at 600 °C operate in depletion-mode with threshold voltages −20 to −10V and turn-on voltages ∼3V less than the threshold voltage. These devices have excellent drain current saturation, peak incremental channel mobilities of 45–55cm2V−1s−1, drain current on-to-off ratios of ∼106, and inverse subthreshold slopes of ∼0.8V∕decade. In contrast, ZIO TTFTs annealed at 300 °C typically operate in enhancement-mode with threshold voltages of 0–10V and turn-on voltages 1–2V less than the threshold voltage. These 300 °C devices exhibit excellent drain–current saturation, peak incremental channel mobilities of 10–30cm2V−1s−1, drain current on-to-off ratios of ∼106, and inverse subthreshold slopes of ∼0.3V∕decade. ZIO TTFTs with the channel layer deposited ne...

Journal ArticleDOI
TL;DR: In this paper, the reaction of eutectic SnPb solder with electrodeposited laminate Cu is studied and a large number of Kirkendall voids were observed at the interface between Cu3Sn and Cu.
Abstract: The electronic packaging industry has been using electroless Ni(P)∕immersion Au as bonding pads for solder joints. Because of the persistence of the black pad defect, which is due to cracks in the pad surface, the industry is looking for a replacement of the Ni(P) plating. Several Cu-based candidates have been suggested, but most of them will lead to the direct contact of solder with Cu in soldering. The fast reaction of solder with Cu, especially during solid state aging, may be a concern for the solder joint reliability if the package will be used in a high temperature environment and is highly stressed. In this work, the reaction of eutectic SnPb solder with electrodeposited laminate Cu is studied. Emphasis is given to the evolution of the microstructure in the interfacial region during solid state aging and its effect on solder joint reliability. A large number of Kirkendall voids were observed at the interface between Cu3Sn and Cu. The void formation resulted in weak bonding between solder and Cu and...

Journal ArticleDOI
TL;DR: In this paper, the authors focus on the case of gate dielectrics of interest for current Si microelectronics, i.e., Si oxides or oxynitrides of thickness ranging from some tens of nanometers down to about 1nm.
Abstract: In this paper we review the subject of oxide breakdown (BD), focusing our attention on the case of the gate dielectrics of interest for current Si microelectronics, i.e., Si oxides or oxynitrides of thickness ranging from some tens of nanometers down to about 1nm. The first part of the paper is devoted to a concise description of the subject concerning the kinetics of oxide degradation under high-voltage stress and the statistics of the time to BD. It is shown that, according to the present understanding, the BD event is due to a buildup in the oxide bulk of defects produced by the stress at high voltage. Defect concentration increases up to a critical value corresponding to the onset of one percolation path joining the gate and substrate across the oxide. This triggers the BD, which is therefore believed to be an intrinsic effect, not due to preexisting, extrinsic defects or processing errors. We next focus our attention on experimental studies concerning the kinetics of the final event of BD, during whi...

Journal ArticleDOI
TL;DR: In this paper, a variational approach is used to show that nanowire heterostructures are more effective at relieving mismatch strain coherently, in which the mismatch strain is shared by the overlayer and underlayer, and could as well be partially accomodated by the mesh.
Abstract: Due to their unique boundary conditions, nanowire heterostructures may exhibit defect-free interfaces even for systems with large lattice mismatch. Heteroepitaxial material integration is limited by lattice mismatches in planar systems, but we use a variational approach to show that nanowire heterostructures are more effective at relieving mismatch strain coherently. This is an equilibrium model based on the Matthews critical thickness in which the lattice mismatch strain is shared by the nanowire overlayer and underlayer, and could as well be partially accomodated by the

Journal ArticleDOI
TL;DR: In this article, the authors characterized the optical absorption properties of Ge2Sb2Te5 in its amorphous, face-centered-cubic, and hexagonal phases, and explained the origins of inconsistent or unphysical results in previous reports.
Abstract: Ge–Sb–Te alloys are widely used for data recording based on the rapid and reversible amorphous-to-crystalline phase transformation that is accompanied by increases in the optical reflectivity and the electrical conductivity. However, uncertainties about the optical band gaps and electronic transport properties of these phases have persisted because of inappropriate interpretation of reported data and the lack of definitive analytical studies. In this paper we characterize the most widely used composition, Ge2Sb2Te5, in its amorphous, face-centered-cubic, and hexagonal phases, and explain the origins of inconsistent or unphysical results in previous reports. The optical absorption in all of these phases follows the relationship αhν∝(hν−Egopt)2, which corresponds to the optical transitions in most amorphous semiconductors as proposed by Tauc, Grigorovici, and Vancu [Tauc et al., Phys. Status Solidi 15, 627 (1966)], and to those in indirect-gap crystalline semiconductors. The optical band gaps of the amorpho...

Journal ArticleDOI
TL;DR: In this paper, thermal diffusivity, specific heat at constant pressure (Cp), thermal conductivity (κ), coefficient of thermal expansion (α), thermal coefficient of the optical path length (γ) equal to (dO∕dT)∕L, and thermal coefficient coefficient of refractive index (dn∕DT) at 1064nm, where O denotes the optical length, which is equal to the product of the refractive indices (n) and sample length (L).
Abstract: Thermo-optic materials properties of laser host materials have been measured to enable solid-state laser performance modeling The thermo-optic properties include thermal diffusivity (β), specific heat at constant pressure (Cp), thermal conductivity (κ), coefficient of thermal expansion (α), thermal coefficient of the optical path length (γ) equal to (dO∕dT)∕L, and thermal coefficient of refractive index (dn∕dT) at 1064nm; O denotes the optical path length, which is equal to the product of the refractive index (n) and sample length (L) Thermal diffusivity and specific heat were measured using laser-flash method Thermal conductivity was deduced using measured values of β, Cp, and the density (ρ) Thermal expansion was measured using a Michelson laser interferometer Thermal coefficient of the optical path length was measured at 1064nm, using interference between light reflected from the front and rear facets of the sample Thermal coefficient of the refractive index was determined, using the measured val

Journal ArticleDOI
TL;DR: In this article, a shift in deep-level emission from green to yellow was observed with reduced Zn pressure during the growth of ZnO films, and it was suggested that the green emission is related to donor-deep acceptor (Zn vacancy VZn−) and the yellow-to-donor-deep-acceptor (oxygen vacancy, Oi−).
Abstract: The properties of ZnO films grown by molecular-beam epitaxy are reported. The primary focus was on understanding the origin of deep-level luminescence. A shift in deep-level emission from green to yellow is observed with reduced Zn pressure during the growth. Photoluminescence and Hall measurements were employed to study correlations between deep-level/near-band-edge emission and carrier density. With these results, we suggest that the green emission is related to donor-deep acceptor (Zn vacancy VZn−) and the yellow to donor-deep acceptor (oxygen vacancy, Oi−).

Journal ArticleDOI
TL;DR: In this article, the authors show parallel alignment of carbon nanotubes along a uniform liquid crystal director field and electrically verify their reorientation behavior for two complementary geometries.
Abstract: Parallel alignment of nanotubes can be obtained by dispersion in a self-organizing anisotropic fluid such as a nematic liquid crystal. Exploiting the cooperative reorientation of liquid crystals, the overall direction of the nanotube alignment can be controlled both statically and dynamically by the application of external fields. These can be electric, magnetic, mechanic, or even optic in nature. Employing multiwall as well as single-wall carbon nanotubes, we show their parallel alignment along a uniform liquid crystal director field and electrically verify their reorientation behavior for two complementary geometries. These demonstrate electrically controlled carbon nanotube OFF–ON and ON–OFF switches. Further applicational potential will be outlined.

Journal ArticleDOI
TL;DR: In this paper, the influence of various plasma conditions (power, type of gas, treatment time, pressure, position of the CNT sample inside the chamber) on the functionalization of the MWCNT surface was analyzed by x-ray photoelectron spectroscopy.
Abstract: Inductive coupled rf-plasma at 13.56 MHz was used to modify multiwalled carbon nanotubes (MWCNTs). This technique can be easily used to tailor the chemical composition of carbon nanotubes by attaching a wide variety of functional groups at their surface: oxygen-, nitrogen-, and fluorine-containing groups have been grafted. The influence of various plasma conditions (power, type of gas, treatment time, pressure, position of the CNT sample inside the chamber) on the functionalization of the MWCNT surface was analyzed by x-ray photoelectron spectroscopy. The results show that for too high oxygen plasma power, chemical etching occurs at the surface of the CNT, thus destroying its structure. On the other hand, for optimal values of the plasma parameters, functional groups (hydroxide, carbonyl, carboxyl, amine, fluorine, etc.) were found to bond to the CNT surface, suggesting that both the concentration and type of the functional groups are in close connection with the plasma conditions. These results were compared to interaction energies predicted by ab initio calculations for different functional groups under consideration, showing that functionalization by oxygen plasma produces mainly functional groups with lower interaction energy.

Journal ArticleDOI
TL;DR: In this paper, a phenomenological thermodynamic potential was constructed based on the properties of bulk BaTiO3 single crystals using an eighth-order polynomial of Landau-Devonshire expansion.
Abstract: A phenomenological thermodynamic potential was constructed based on the properties of bulk BaTiO3 single crystals. An eighth-order polynomial of Landau-Devonshire expansion was employed. It reproduces bulk properties including the three possible ferroelectric transition temperatures and their dependence on electric fields, as well as the dielectric and piezoelectric constants. Different from the existing thermodynamic potential, it is applicable to predicting the ferroelectric phase transitions and properties of BaTiO3 thin films under large compressive biaxial strains.

Journal ArticleDOI
TL;DR: In this article, the authors focus on DBDs operating in a glow regime, i.e., where the discharge is sustained by ion-induced secondary electron emission from the surface and volume ionization.
Abstract: Surface discharges created in dielectric barrier discharge (DBD) configurations have been proposed as actuators for flow control in aerodynamic applications. We focus on DBDs operating in a glow regime, i.e., where the discharge is sustained by ion-induced secondary electron emission from the surface and volume ionization. After a brief discussion of the force per unit volume acting on the flow and due to the momentum transfer from charged particles to neutral molecules, we present calculations of this force based on a two-dimensional fluid model of the surface discharge. We show that this force is of the same nature as the electric wind in a corona discharge. However, the force in a DBD is localized in the cathode sheath region of the discharge expanding along the dielectric surface. While its intensity is much larger than the analogous force in a direct-current corona discharge, it is active during less than one hundred nanoseconds for each discharge pulse and the time-averaged forces in the two cases a...

Journal ArticleDOI
TL;DR: In this paper, KNNT-based ceramics were sintered at atmospheric pressure by adding small amounts of sintering aid [0.38mol% K5.4Cu1.7Ta0.3Ta10O29].
Abstract: (K0.5Na0.5)(Nb1−xTax)O3 (KNNT)-based ceramics have been synthesized via a solid-state reaction. In this study, KNNT-based ceramics were sintered at atmospheric pressure by adding small amounts of sintering aid [0.38mol% K5.4Cu1.3Ta10O29]. The (K0.5Na0.5)NbO3 (KNN) ceramics which synthesized by using the K5.4Cu1.3Ta10O29 showed “hard” piezoelectric characteristics such as a high mechanical quality factor (Qm=1300) and low tanδ (0.4%). The quantitative effects of Ta on the electrical properties of (K0.5Na0.5)(Nb1−xTax)O3–K5.4Cu1.3Ta10O29 ceramics were also examined. Ta substitution provides “soft” piezoelectric characteristics and a large electrostrictive effect for KNN, which resulted in an improvement in kp, er, strain, and d33 of KNNT ceramics depending upon the Ta content. Especially, (K0.5Na0.5)(Nb0.7Ta0.3)O3 showed the maximum strain and d33 values of 0.11% (at 40kV∕cm) and 270pm∕V (at 30–40kV∕cm), respectively. This strain level is comparable to that of hard Pb(Zr,Ti)O3 ceramics.

Journal ArticleDOI
TL;DR: In this article, it was shown that most of the observed anomalous Raman modes correspond to wurtzite-ZnO silent modes allowed by the breakdown of the translational crystal symmetry induced by defects and impurities.
Abstract: Anomalous Raman modes have been reported in several recent papers dealing with doped- and undoped-ZnO layers grown by different methods. Most of these anomalous Raman modes have been attributed to local vibrational modes of impurities or defects. However, we will show that most of the observed modes correspond to wurtzite-ZnO silent modes allowed by the breakdown of the translational crystal symmetry induced by defects and impurities.

Journal ArticleDOI
TL;DR: In this article, the growth of a grating perpendicular to the polarization vector consisting of nearly wavelength-sized periodic lines was observed with an increasing number of pulses per spot, up to 100, and the formation of equally oriented ripples with a spatial period close to half the laser wavelength.
Abstract: Laser-induced periodic surface structures (LIPSS; ripples) with different spatial characteristics have been observed after irradiation of single-crystalline indium phosphide (c-InP) with multiple linearly polarized femtosecond pulses (130fs, 800nm) in air. With an increasing number of pulses per spot, N, up to 100, a characteristic evolution of two different types of ripples has been observed, i.e., (i) the growth of a grating perpendicular to the polarization vector consisting of nearly wavelength-sized periodic lines and (ii), in a specific pulse number regime (N=5–30), the additional formation of equally oriented ripples with a spatial period close to half of the laser wavelength. For pulse numbers higher than 50, the formation of micrometer-spaced grooves has been found, which are oriented perpendicular to the ripples. These topographical surface alterations are discussed in the frame of existing LIPSS theories.