scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Applied Physics in 2016"


Journal ArticleDOI
TL;DR: In this paper, the electron mean free path and carrier relaxation time τ of the twenty most conductive elemental metals were determined by numerical integration over the Fermi surface obtained from first-principles, using constant λ or τ approximations and wave-vector dependent fermi velocities vf (k).
Abstract: The electron mean free path λ and carrier relaxation time τ of the twenty most conductive elemental metals are determined by numerical integration over the Fermi surface obtained from first-principles, using constant λ or τ approximations and wave-vector dependent Fermi velocities vf (k). The average vf deviates considerably from the free-electron prediction, even for elements with spherical Fermi surfaces including Cu (29% deviation). The calculated product of the bulk resistivity times λ indicates that, in the limit of narrow wires, Rh, Ir, and Ni are 2.1, 1.8, and 1.6 times more conductive than Cu, while various metals including Mo, Co, and Ru approximately match the Cu resistivity, suggesting that these metals are promising candidates to replace Cu for narrow interconnect lines.

647 citations


Journal ArticleDOI
TL;DR: In this paper, the authors focus on processes that can be analyzed or understood in terms of configuration coordinate diagrams of defects in their different charge states, such as light absorption, luminescence, and nonradiative capture of charge carriers.
Abstract: Point defects affect or even completely determine physical and chemical properties of semiconductors Characterization of point defects based on experimental techniques alone is often inconclusive In such cases, the combination of experiment and theory is crucial to gain understanding of the system studied In this tutorial, we explain how and when such comparison provides new understanding of the defect physics More specifically, we focus on processes that can be analyzed or understood in terms of configuration coordinate diagrams of defects in their different charge states These processes include light absorption, luminescence, and nonradiative capture of charge carriers Recent theoretical developments to describe these processes are reviewed

286 citations


Journal ArticleDOI
TL;DR: In this article, the authors proposed an alloy design strategy to intrinsically ductilize RHEAs based on the electron theory and more specifically to decrease the number of valence electrons through controlled alloying.
Abstract: Refractory high-entropy alloys (RHEAs), comprising group IV (Ti, Zr, Hf), V (V, Nb, Ta), and VI (Cr, Mo, W) refractory elements, can be potentially new generation high-temperature materials However, most existing RHEAs lack room-temperature ductility, similar to conventional refractory metals and alloys Here, we propose an alloy design strategy to intrinsically ductilize RHEAs based on the electron theory and more specifically to decrease the number of valence electrons through controlled alloying A new ductile RHEA, Hf05 Nb 05 Ta 05Ti15Zr, was developed as a proof of concept, with a fracture stress of close to 1 GPa and an elongation of near 20% The findings here will shed light on the development of ductile RHEAs for ultrahigh-temperature applications in aerospace and power-generation industries

244 citations


Journal ArticleDOI
TL;DR: In this article, the authors review the need for multiscale modeling to address the processes starting from electronic excitation of the spin system on the picometer length scale and sub-femtosecond time scale, to spin wave generation, and towards the modeling of ultrafast phase transitions that altogether determine the response time of the ferromagnetic system.
Abstract: This year the discovery of femtosecond demagnetization by laser pulses is 20 years old. For the first time, this milestone work by Bigot and coworkers gave insight directly into the time scales of microscopic interactions that connect the spin and electron system. While intense discussions in the field were fueled by the complexity of the processes in the past, it now became evident that it is a puzzle of many different parts. Rather than providing an overview that has been presented in previous reviews on ultrafast processes in ferromagnets, this perspective will show that with our current depth of knowledge the first applications are developed: THz spintronics and all-optical spin manipulation are becoming more and more feasible. The aim of this perspective is to point out where we can connect the different puzzle pieces of understanding gathered over 20 years to develop novel applications. Based on many observations in a large number of experiments. Differences in the theoretical models arise from the localized and delocalized nature of ferromagnetism. Transport effects are intrinsically non-local in spintronic devices and at interfaces. We review the need for multiscale modeling to address the processes starting from electronic excitation of the spin system on the picometer length scale and sub-femtosecond time scale, to spin wave generation, and towards the modeling of ultrafast phase transitions that altogether determine the response time of the ferromagnetic system. Today, our current understanding gives rise to the first usage of ultrafast spin physics for ultrafast magnetism control: THz spintronic devices. This makes the field of ultrafast spin-dynamics an emerging topic open for many researchers right now.

219 citations


Journal ArticleDOI
TL;DR: In this paper, the degradation mechanism of organic-inorganic perovskite (CH3NH3PbI3) solar cells in humid air environments is studied from real-time spectroscopic ellipsometry characterization.
Abstract: Low stability of organic-inorganic perovskite (CH3NH3PbI3) solar cells in humid air environments is a serious drawback which could limit practical application of this material severely. In this study, from real-time spectroscopic ellipsometry characterization, the degradation mechanism of ultra-smooth CH3NH3PbI3 layers prepared by a laser evaporation technique is studied. We present evidence that the CH3NH3PbI3 degradation in humid air proceeds by two competing reactions of (i) the PbI2 formation by the desorption of CH3NH3I species and (ii) the generation of a CH3NH3PbI3 hydrate phase by H2O incorporation. In particular, rapid phase change occurs in the near-surface region and the CH3NH3PbI3 layer thickness reduces rapidly in the initial 1 h air exposure even at a low relative humidity of 40%. After the prolonged air exposure, the CH3NH3PbI3 layer is converted completely to hexagonal platelet PbI2/hydrate crystals that have a distinct atomic-scale multilayer structure with a period of 0.65 ± 0.05 nm. We ...

171 citations


Journal ArticleDOI
Abstract: Elastic/acoustic metamaterials made from locally resonant arrays can exhibit bandgaps at wavelengths much longer than the lattice size for various applications spanning from low-frequency vibration/sound attenuation to wave guiding and filtering in mechanical and electromechanical devices. For an effective use of such locally resonant metamaterial concepts in finite structures, it is required to bridge the gap between the lattice dispersion characteristics and modal behavior of the host structure with its resonators. To this end, we develop a novel argument for bandgap formation in finite-length elastic metamaterial beams, relying on the modal analysis and the assumption of infinitely many resonators. We show that the dual problem to wave propagation through an infinite periodic beam is the modal analysis of a finite beam with an infinite number of resonators. A simple formula that depends only on the resonator natural frequency and total mass ratio is derived for placing the bandgap in a desired frequency range, yielding an analytical insight and a rule of thumb for design purposes. A method for understanding the importance of a resonator location and mass is discussed in the context of a Riemann sum approximation of an integral, and a method for determining the optimal number of resonators for a given set of boundary conditions and target frequency is introduced. The simulations of the theoretical framework are validated by experiments for bending vibrations of a locally resonant cantilever beam.

170 citations


Journal ArticleDOI
TL;DR: In this article, the authors review how thin film stress is measured and interpreted, and the results are used to describe a comprehensive picture that is emerging of what controls stress evolution in thin film growth.
Abstract: Residual stress is a long-standing issue in thin film growth. Better understanding and control of film stress would lead to enhanced performance and reduced failures. In this work, we review how thin film stress is measured and interpreted. The results are used to describe a comprehensive picture that is emerging of what controls stress evolution. Examples from multiple studies are discussed to illustrate how the stress depends on key parameters (e.g., growth rate, material type, temperature, grain size, morphology, etc.). The corresponding stress-generating mechanisms that have been proposed to explain the data are also described. To develop a fuller understanding, we consider the kinetic factors that determine how much each of these processes contributes to the overall stress under different conditions. This leads to a kinetic model that can predict the dependence of the stress on multiple parameters. The model results are compared with the experiments to show how this approach can explain many features of stress evolution.

152 citations


Journal ArticleDOI
TL;DR: In this paper, the performance of CdTe solar cells can be very sensitive to the emitter/absorber interface, especially for high-efficiency cells with high bulk lifetime.
Abstract: The performance of CdTe solar cells can be very sensitive to the emitter/absorber interface, especially for high-efficiency cells with high bulk lifetime. Performance losses from acceptor-type interface defects can be significant when interface defect states are located near mid-gap energies. Numerical simulations show that the emitter/absorber band alignment, the emitter doping and thickness, and the defect properties of the interface (i.e., defect density, defect type, and defect energy) can all play significant roles in the interface recombination. In particular, a type I heterojunction with small conduction-band offset (0.1 eV ≤ ΔEC ≤ 0.3 eV) can help maintain good cell efficiency in spite of high interface defect density, much like with Cu(In,Ga)Se2 (CIGS) cells. The basic principle is that positive ΔEC, often referred to as a “spike,” creates an absorber inversion and hence a large hole barrier adjacent to the interface. As a result, the electron-hole recombination is suppressed due to an insufficie...

144 citations


Journal ArticleDOI
TL;DR: In this article, the formation of single bilayer Sb(111) ultrathin film (Antimonene) on Bi2Te3 and Sb2Te-3 substrates for the first time was explored.
Abstract: We explore the formation of single bilayer Sb(111) ultrathin film (Antimonene) on Bi2Te3 and Sb2Te3 substrates for the first time, which is theoretically predicated to be a robust trivial semiconductor but can be tuned to a 2D TI by reducing the buckling height. From angle-resolved photoemission spectroscopy measurements, the antimonene can be well grown on the two surfaces and shows clear band dispersion. The electronic structure of the antimonene shows similar character on the two surfaces, but due to the interfacial strain effect, the bands of antimonene on Bi2Te3 are flatter than on Sb2Te3, which attributes to Bi2Te3 substrate lattice constants lager than Sb2Te3. At the same time, the charge transfer effect is also observed through core level shift, which influences the band dispersion simultaneously.

144 citations


Journal ArticleDOI
TL;DR: In this paper, a self-trapped hole formation near the Schottky barrier in reverse bias was found to produce photoconductive gain, which can explain the operation of a variety of β-Ga2O3 photodetectors.
Abstract: Solar-blind photodetection and photoconductive gain >50 corresponding to a responsivity >8 A/W were observed for β-Ga2O3 Schottky photodiodes. The origin of photoconductive gain was investigated. Current-voltage characteristics of the diodes did not indicate avalanche breakdown, which excludes carrier multiplication by impact ionization as the source for gain. However, photocapacitance measurements indicated a mechanism for hole localization for above-band gap illumination, suggesting self-trapped hole formation. Comparison of photoconductivity and photocapacitance spectra indicated that self-trapped hole formation coincides with the strong photoconductive gain. It is concluded that self-trapped hole formation near the Schottky diode lowers the effective Schottky barrier in reverse bias, producing photoconductive gain. Ascribing photoconductive gain to an inherent property like self-trapping of holes can explain the operation of a variety of β-Ga2O3 photodetectors.

141 citations


Journal ArticleDOI
TL;DR: In this paper, an explanation of electroporation from the molecular level of the cell membrane up to the tissue level is provided theoretically/numerically with relation to experimental observations.
Abstract: Electroporation is being successfully used in biology, medicine, food processing, and biotechnology, and in some environmental applications. Recent applications also include in addition to classical electroporation, where cells are exposed to micro- or milliseconds long pulses, exposures to extremely short nanosecond pulses, i.e., high-frequency electroporation. Electric pulses are applied to cells in different structural configurations ranging from suspended cells to cells in tissues. Understanding electroporation of cells in tissues and other complex environments is a key to its successful use and optimization in various applications. Thus, explanation will be provided theoretically/numerically with relation to experimental observations by scaling our understanding of electroporation from the molecular level of the cell membrane up to the tissue level.

Journal ArticleDOI
TL;DR: In this article, the layer thickness-dependent phonon properties and thermal conductivity in the few-layer MoS2 were studied using the first-principles-based Peierls-Boltzmann transport equation approach.
Abstract: For conventional materials, the thermal conductivity of thin films is usually suppressed when the thickness decreases due to phonon-boundary scattering. However, this is not necessarily true for the van der Waals solids if the thickness is reduced to only a few layers. In this letter, the layer thickness-dependent phonon properties and thermal conductivity in the few-layer MoS2 are studied using the first-principles-based Peierls-Boltzmann transport equation approach. The basal-plane thermal conductivity of 10-μm-long samples is found to monotonically reduce from 138 W/mK to 98 W/mK for naturally occurring MoS2, and from 155 W/mK to 115 W/mK for isotopically pure MoS2, when its thickness increases from one layer to three layers. The thermal conductivity of tri-layer MoS2 approaches to that of bulk MoS2. Both the change of phonon dispersion and the thickness-induced anharmonicity are important for explaining such a thermal conductivity reduction. The increased anharmonicity in bi-layer MoS2 results in stro...

Journal ArticleDOI
TL;DR: A synaptic transistor based on the indium gallium zinc oxide (IGZO)–aluminum oxide (Al2O3) thin film structure, which uses ultraviolet (UV) light pulses as the pre-synaptic stimulus, has been demonstrated and exhibits the behavior of synaptic plasticity like the paired-pulse facilitation.
Abstract: In this work, a synaptic transistor based on the indium gallium zinc oxide (IGZO)–aluminum oxide (Al2O3) thin film structure, which uses ultraviolet (UV) light pulses as the pre-synaptic stimulus, has been demonstrated. The synaptic transistor exhibits the behavior of synaptic plasticity like the paired-pulse facilitation. In addition, it also shows the brain's memory behaviors including the transition from short-term memory to long-term memory and the Ebbinghaus forgetting curve. The synapse-like behavior and memory behaviors of the transistor are due to the trapping and detrapping processes of the holes, which are generated by the UV pulses, at the IGZO/Al2O3 interface and/or in the Al2O3 layer.

Journal ArticleDOI
TL;DR: A surface sensitivity study was performed on different transition-metal dichalcogenides (TMDs) under ambient conditions in order to understand which material is the most suitable for future device applications as mentioned in this paper.
Abstract: A surface sensitivity study was performed on different transition-metal dichalcogenides (TMDs) under ambient conditions in order to understand which material is the most suitable for future device applications. Initially, Atomic Force Microscopy and Scanning Electron Microscopy studies were carried out over a period of 27 days on mechanically exfoliated flakes of 5 different TMDs, namely, MoS2, MoSe2, MoTe2, HfS2, and HfSe2. The most reactive were MoTe2 and HfSe2. HfSe2, in particular, showed surface protrusions after ambient exposure, reaching a height and width of approximately 60 nm after a single day. This study was later supplemented by Transmission Electron Microscopy (TEM) cross-sectional analysis, which showed hemispherical-shaped surface blisters that are amorphous in nature, approximately 180–240 nm tall and 420–540 nm wide, after 5 months of air exposure, as well as surface deformation in regions between these structures, related to surface oxidation. An X-ray photoelectron spectroscopy study o...

Journal ArticleDOI
Abstract: The investigation of the rotational dynamics of magnetic nanoparticles in magnetic fields is of academic interest but also important for applications such as magnetic particle imaging where the particles are exposed to magnetic fields with amplitudes of up to 25 mT. We have experimentally studied the dependence of Brownian and Neel relaxation times on ac and dc magnetic field amplitude using ac susceptibility measurements in the frequency range between 2 Hz and 9 kHz for field amplitudes up to 9 mT. As samples, single-core iron oxide nanoparticles with core diameters between 20 nm and 30 nm were used either suspended in water-glycerol mixtures or immobilized by freeze-drying. The experimentally determined relaxation times are compared with theoretical models. It was found that the Neel relaxation time decays much faster with increasing field amplitude than the Brownian one. Whereas the dependence of the Brownian relaxation time on the ac and dc field amplitude can be well explained with existing theoretic...

Journal ArticleDOI
TL;DR: In this article, the effect of phonon-electron (p-e) scattering on lattice thermal conductivity is investigated for Cu, Ag, Au, Al, Pt, and Ni.
Abstract: The effect of phonon-electron (p-e) scattering on lattice thermal conductivity is investigated for Cu, Ag, Au, Al, Pt, and Ni. We evaluate both phonon-phonon (p-p) and p-e scattering rates from first principles and calculate the lattice thermal conductivity (κL). It is found that p-e scattering plays an important role in determining the κL of Pt and Ni at room temperature, while it has negligible effect on the κL of Cu, Ag, Au, and Al. Specifically, the room temperature κLs of Cu, Ag, Au, and Al predicted from density-functional theory calculations with the local density approximation are 16.9, 5.2, 2.6, and 5.8 W/m K, respectively, when only p-p scattering is considered, while it is almost unchanged when p-e scattering is also taken into account. However, the κL of Pt and Ni is reduced from 7.1 and 33.2 W/m K to 5.8 and 23.2 W/m K by p-e scattering. Even though Al has quite high electron-phonon coupling constant, a quantity that characterizes the rate of heat transfer from hot electrons to cold phonons i...

Journal ArticleDOI
TL;DR: In this article, a relaxor antiferroelectric behavior with slim and slanted hysteresis loops was used to reduce the dielectric hystresis loss and increase the discharge energy density.
Abstract: Pulsed capacitors require high energy density and low loss, properties that can be realized through selection of composition. Ceramic (Pb0.88La0.08)(Zr0.91Ti0.09)O3 was found to be an ideal candidate. La3+ doping and excess PbO were used to produce relaxor antiferroelectric behavior with slim and slanted hysteresis loops to reduce the dielectric hysteresis loss, to increase the dielectric strength, and to increase the discharge energy density. The discharge energy density of this composition was found to be 3.04 J/cm3 with applied electric field of 170 kV/cm, and the energy efficiency, defined as the ratio of the discharge energy density to the charging energy density, was 0.920. This high efficiency reduces the heat generated under cyclic loading and improves the reliability. The properties were observed to degrade some with temperature increase above 80 °C. Repeated electric field cycles up to 10 000 cycles were applied to the specimen with no observed performance degradation.

Journal ArticleDOI
TL;DR: In this article, the authors investigate wave motion in a continuous elastic rod with a periodically attached inertial-amplification mechanism, which has properties similar to an "inerter" typically used in vehicle suspensions, but here it is constructed and utilized in a manner that alters the intrinsic properties of a continuous structure.
Abstract: We investigate wave motion in a continuous elastic rod with a periodically attached inertial-amplification mechanism. The mechanism has properties similar to an “inerter” typically used in vehicle suspensions, however here it is constructed and utilized in a manner that alters the intrinsic properties of a continuous structure. The elastodynamic band structure of the hybrid rod-mechanism structure yields band gaps that are exceedingly wide and deep when compared to what can be obtained using standard local resonators, while still being low in frequency. With this concept, a large band gap may be realized with as much as twenty times less added mass compared to what is needed in a standard local resonator configuration. The emerging inertially enhanced continuous structure also exhibits unique qualitative features in its dispersion curves. These include the existence of a characteristic double-peak in the attenuation constant profile within gaps and the possibility of coalescence of two neighbouring gaps creating a large contiguous gap.

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a framework to realize helical edge states in phononic systems using two identical lattices with interlayer couplings between them, and the lattices are composed of passive components and the building blocks are a set of disks and linear springs.
Abstract: We propose a framework to realize helical edge states in phononic systems using two identical lattices with interlayer couplings between them. A methodology is presented to systematically transform a quantum mechanical lattice which exhibits edge states to a phononic lattice, thereby developing a family of lattices with edge states. Parameter spaces with topological phase boundaries in the vicinity of the transformed system are illustrated to demonstrate the robustness to mechanical imperfections. A potential realization in terms of fundamental mechanical building blocks is presented for the hexagonal and Lieb lattices. The lattices are composed of passive components and the building blocks are a set of disks and linear springs. Furthermore, by varying the spring stiffness, topological phase transitions are observed, illustrating the potential for tunability of our lattices.

Journal ArticleDOI
TL;DR: In this paper, the absorption coefficient and refractive index of Ge1−xSnx alloys were characterized for the wavelength range from 1500 to 2500 nm via spectroscopic ellipsometry at room temperature.
Abstract: The absorption coefficient and refractive index of Ge1−xSnx alloys (x from 0% to 10%) were characterized for the wavelength range from 1500 to 2500 nm via spectroscopic ellipsometry at room temperature. By applying physical models to fit the obtained data, two empirical formulae with extracted constants and coefficients were developed: (1) Absorption coefficient. The absorption regarding Urbach tail, indirect and direct bandgap transitions were comprehensively taken into account; (2) refractive index. The Sellmeier coefficients associated with dispersion relationship were extracted. In these formulae, the Sn composition and strain percentage were the input parameters, by inputting which the spectral absorption coefficient and spectral refractive index can be obtained. Since the absorption coefficient is key information to determine the performance of the photodetectors including operation wavelength range, responsivity, and specific detectivity, and the refractive index is very useful for the design of the anti-reflection coating for photodetectors and the layer structure for waveguides, the developed formulae could simplify the optoelectronic device design process due to their parameter-based expressions.

Journal ArticleDOI
TL;DR: In this article, the average lattice constants of the ternary structures provided good approximations to that of the random structures for three entropic rocksalt oxides.
Abstract: Density functional theory calculations were carried out for three entropic rocksalt oxides, (Mg0.1Co0.1Ni0.1Cu0.1Zn0.1)O0.5, termed J14, and J14 + Li and J14 + Sc, to understand the role of charge neutrality and electronic states on their properties, and to probe whether simple expressions may exist that predict stability. The calculations predict that the average lattice constants of the ternary structures provide good approximations to that of the random structures. For J14, Bader charges are transferable between the binary, ternary, and random structures. For J14 + Sc and J14 + Li, average Bader charges in the entropic structures can be estimated from the ternary compositions. Addition of Sc to J14 reduces the majority of Cu, which show large displacements from ideal lattice sites, along with reduction of a few Co and Ni cations. Addition of Li to J14 reduces the lattice constant, consistent with experiment, and oxidizes some of Co as well as some of Ni and Cu. The Bader charges and spin-resolved densi...

Journal ArticleDOI
TL;DR: In this paper, the energy storage performance and charge-discharge properties of Pb0.995O3 (PLZST) antiferroelectric ceramics were investigated through directly measuring the hysteresis loops and pulse discharge current-time curves.
Abstract: The energy storage performance and charge-discharge properties of Pb0.98La0.02(Zr0.35Sn0.55Ti0.10)0.995O3 (PLZST) antiferroelectric ceramics were investigated through directly measuring the hysteresis loops and pulse discharge current-time curves. The energy density only varies 0.2% per degree from 25 °C to 85 °C, and the energy efficiency maintains at about 90%. Furthermore, an approximate calculating model of maximum power density pmax was established for the discharge process. Under a relatively high working electric field (8.2 kV/mm), this ceramics possess a greatly enhanced power density of 18 MW/cm3. Moreover, the pulse power properties did not show degradation until 1500 times of charge-discharge cycling. The large released energy density, high energy efficiency, good temperature stability, greatly enhanced power density, and excellent fatigue endurance combined together make this PLZST ceramics an ideal candidate for pulse power applications.

Journal ArticleDOI
TL;DR: In this article, the authors developed a general analysis scheme in which the optical and recombination losses in submicron-textured solar cells are evaluated systematically from external quantum efficiency (EQE) spectra.
Abstract: In developing photovoltaic devices with high efficiencies, quantitative determination of the carrier loss is crucial. In conventional solar-cell characterization techniques, however, photocurrent reduction originating from parasitic light absorption and carrier recombination within the light absorber cannot be assessed easily. Here, we develop a general analysis scheme in which the optical and recombination losses in submicron-textured solar cells are evaluated systematically from external quantum efficiency (EQE) spectra. In this method, the optical absorption in solar cells is first deduced by imposing the anti-reflection condition in the calculation of the absorptance spectrum, and the carrier extraction from the light absorber layer is then modeled by considering a carrier collection length from the absorber interface. Our analysis method is appropriate for a wide variety of photovoltaic devices, including kesterite solar cells [Cu2ZnSnSe4, Cu2ZnSnS4, and Cu2ZnSn(S,Se)4], zincblende CdTe solar cells, and hybrid perovskite (CH3NH3PbI3) solar cells, and provides excellent fitting to numerous EQE spectra reported earlier. Based on the results obtained from our EQE analyses, we discuss the effects of parasitic absorption and carrier recombination in different types of solar cells.

Journal ArticleDOI
TL;DR: In this paper, magnetic force microscopy was used to observe the magnetic microstructure of Fe3GeTe2 at 4'K on the (001) surface, and the surface magnetic structure consists of a two-phase domain branching pattern that is characteristic for highly uniaxial magnets in the plane perpendicular to the magnetic easy axis.
Abstract: Magnetic force microscopy was used to observe the magnetic microstructure of Fe3GeTe2 at 4 K on the (001) surface. The surface magnetic structure consists of a two-phase domain branching pattern that is characteristic for highly uniaxial magnets in the plane perpendicular to the magnetic easy axis. The average surface magnetic domain width Ds = 1.3 μm determined from this pattern, in combination with intrinsic properties calculated from bulk magnetization data (the saturation magnetization Ms = 376 emu/cm3 and the uniaxial magnetocrystalline anisotropy constant Ku = 1.46 × 107 erg/cm3), was used to determine the following micromagnetic parameters for Fe3GeTe2 from phenomenological models: the domain wall energy γw = 4.7 erg/cm2, the domain wall thickness δw = 2.5 nm, the exchange stiffness constant Aex = 0.95 × 10−7 erg/cm, the exchange length lex = 2.3 nm, and the critical single domain particle diameter dc = 470 nm.

Journal ArticleDOI
TL;DR: In this paper, a simple realization of the magnon Hall effect in a two-band model on the honeycomb lattice was proposed, and it was shown that the thermal Hall conductivity has a fixed sign for all parameter regimes considered.
Abstract: Quite recently, the magnon Hall effect of spin excitations has been observed experimentally on the kagome and pyrochlore lattices. The thermal Hall conductivity κxy changes sign as a function of magnetic field or temperature on the kagome lattice, and κxy changes sign upon reversing the sign of the magnetic field on the pyrochlore lattice. Motivated by these recent exciting experimental observations, we theoretically propose a simple realization of the magnon Hall effect in a two-band model on the honeycomb lattice. The magnon Hall effect of spin excitations arises in the usual way via the breaking of inversion symmetry of the lattice, however, by a next-nearest-neighbour Dzyaloshinsky-Moriya interaction. We find that κxy has a fixed sign for all parameter regimes considered. These results are in contrast to the Lieb, kagome, and pyrochlore lattices. We further show that the low-temperature dependence on the magnon Hall conductivity follows a T2 law, as opposed to the kagome and pyrochlore lattices. These results suggest an experimental procedure to measure thermal Hall conductivity within a class of 2D honeycomb quantum magnets and ultracold atoms trapped in a honeycomb optical lattice.

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a method that quantifies the extent to which a mode's character corresponds to a propagating mode, e.g., exhibits plane wave modulation, which then allows for clear and quantitative distinctions between propagons and diffusons.
Abstract: The majority of intuition on phonon transport has been derived from studies of homogenous crystalline solids, where the atomic composition and structure are periodic. For this specific class of materials, the solutions to the equations of motions for the atoms (in the harmonic limit) result in plane wave modulated velocity fields for the normal modes of vibration. However, it has been known for several decades that whenever a system lacks periodicity, either compositional or structural, the normal modes of vibration can still be determined (in the harmonic limit), but the solutions take on different characteristics and many modes may not be plane wave modulated. Previous work has classified the types of vibrations into three primary categories, namely, propagons, diffusions, and locons. One can use the participation ratio to distinguish locons, from propagons and diffusons, which measures the extent to which a mode is localized. However, distinguishing between propagons and diffusons has remained a challenge, since both are spatially delocalized. Here, we present a new method that quantifies the extent to which a mode's character corresponds to a propagating mode, e.g., exhibits plane wave modulation. This then allows for clear and quantitative distinctions between propagons and diffusons. By resolving this issue quantitatively, one can now automate the classification of modes for any arbitrary material or structure, subject to a single constraint that the atoms must vibrate stably around their respective equilibrium sites. Several example test cases are studied including crystalline silicon and germanium, crystalline silicon with different defect concentrations, as well as amorphous silicon, germanium, and silica.

Journal ArticleDOI
TL;DR: In this paper, the authors measured the time/temperature dependence of threshold switching voltage and current in doped Ge2Sb2Te5 nanoscale phase-change memory (PCM) cells over 6 decades in time at temperatures ranging from 40°C to 160°C.
Abstract: In spite of decades of research, the details of electrical transport in phase-change materials are still debated. In particular, the so-called threshold switching phenomenon that allows the current density to increase steeply when a sufficiently high voltage is applied is still not well understood, even though there is wide consensus that threshold switching is solely of electronic origin. However, the high thermal efficiency and fast thermal dynamics associated with nanoscale phase-change memory (PCM) devices motivate us to reassess a thermally assisted threshold switching mechanism, at least in these devices. The time/temperature dependence of the threshold switching voltage and current in doped Ge2Sb2Te5 nanoscale PCM cells was measured over 6 decades in time at temperatures ranging from 40 °C to 160 °C. We observe a nearly constant threshold switching power across this wide range of operating conditions. We also measured the transient dynamics associated with threshold switching as a function of the a...

Journal ArticleDOI
TL;DR: In this article, the authors studied the thermal conduction in suspended polycrystalline diamond films, with thickness ranges between 0.5 and 5.6 μm, using time-domain thermoreflectance.
Abstract: While there is a great wealth of data for thermal transport in synthetic diamond, there remains much to be learned about the impacts of grain structure and associated defects and impurities within a few microns of the nucleation region in films grown using chemical vapor deposition. Measurements of the inhomogeneous and anisotropic thermal conductivity in films thinner than 10 μm have previously been complicated by the presence of the substrate thermal boundary resistance. Here, we study thermal conduction in suspended films of polycrystalline diamond, with thicknesses ranging between 0.5 and 5.6 μm, using time-domain thermoreflectance. Measurements on both sides of the films facilitate extraction of the thickness-dependent in-plane ( κr) and through-plane ( κz) thermal conductivities in the vicinity of the coalescence and high-quality regions. The columnar grain structure makes the conductivity highly anisotropic, with κz being nearly three to five times as large as κr, a contrast higher than that report...

Journal ArticleDOI
TL;DR: In this article, a detailed quantum efficiency analysis of a nanoparticle-based Cu2ZnSnSe4 (CZTSe) solar cell has been conducted to understand photogenerated carrier collection in the device.
Abstract: Detailed quantum efficiency (QE) analysis of a nanoparticle-based Cu2ZnSnSe4 (CZTSe) solar cell has been conducted to understand photogenerated carrier collection in the device. Specifically, voltage-dependent analysis has been considered to characterize both diffusion limitations and recombination limitations to carrier collection. Application of a generalized QE model and corresponding experimental and analytical procedures are presented to account for non-ideal device behavior, with specific consideration of photogenerated charge trapping, finite absorber thickness, back-surface recombination, and recombination of photogenerated carriers via interface, space-charge-region limited, and/or band tail limited recombination mechanisms. Analysis of diffusion limited collection results in extraction of the minority carrier diffusion length, mobility, back surface recombination velocity, and absorption coefficient. Additionally, forward bias QE measurements afford analysis of the dominant recombination mechanism for photogenerated carriers. For the analyzed CZTSe device, diffusion limitations are not expected to play a significant role in carrier collection in forward bias. However, voltage-dependent carrier collection, previously identified to contribute to open-circuit voltage limitations, is attributed to high recombination rates via band tail states/potential fluctuations in forward bias. A consideration of the assumptions commonly applied to diffusion length, band gap, and band tail extraction is also discussed.

Journal ArticleDOI
TL;DR: In this paper, the authors proposed two types of novel perfect electric conductor-perfect magnetic conductor anisotropic metasurfaces, one composed of azimuthally continuous loops and the other is constructed by azIMuthally discontinuous dipole scatterers.
Abstract: Orbital angular momentum (OAM) is a promising degree of freedom for fundamental studies in electromagnetics and quantum mechanics. The unlimited state space of OAM shows a great potential to enhance channel capacities of classical and quantum communications. By exploring the Pancharatnam-Berry phase concept and engineering anisotropic scatterers in a metasurface with spatially varying orientations, a plane wave with zero OAM can be converted to a vortex beam carrying nonzero OAM. In this paper, we proposed two types of novel perfect electric conductor-perfect magnetic conductor anisotropic metasurfaces. One is composed of azimuthally continuous loops and the other is constructed by azimuthally discontinuous dipole scatterers. Both types of metasurfaces are mounted on a mushroom-type high impedance surface. Compared to previous metasurface designs for generating OAM, the proposed ones achieve nearly perfect conversion efficiency. In view of the eliminated vertical component of electric field, the continuou...